2.3 垂径定理.ppt_第1页
2.3 垂径定理.ppt_第2页
2.3 垂径定理.ppt_第3页
2.3 垂径定理.ppt_第4页
2.3 垂径定理.ppt_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、,2.3 垂径定理,第2章 圆,优 翼 课 件,导入新课,讲授新课,当堂练习,课堂小结,学练优九年级数学下(XJ) 教学课件,1.进一步认识圆,了解圆的对称性. 2.理解垂直于弦的直径的性质和推论,并能应用它解决一些简单的计算、证明和作图问题.(重点) 3.灵活运用垂径定理解决有关圆的问题.(难点),导入新课,问题引入,问题1圆是轴对称图形吗?,问题2它的对称轴是什么?你能找到多少条对称轴?,圆是轴对称图形,其对称轴是直径所在的直线 无数条,问题3你知道赵州桥吗? 它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37m, 拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的半径吗?,导

2、入新课,讲授新课,做一做: 剪一个圆形纸片,在圆形纸片上任意画一条垂直于直径CD的弦AB,垂足为P,再将纸片沿着直径CD对折,比较AP与PB,AC与CB,你能发现什么结论?,互动探究,C,线段: AP=BP,O,A,B,D,P,C,想一想: 能不能用所学过的知识证明你的结论?,试一试,证明:连接OA、OB、CA、CB,则OA=OB.,即AOB是等腰三角形.,ABCD,,AP=BP,,AOC=BOC.,从而AOD=BOD.,垂径定理,垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧., CD是直径,CDAB,(条件), AP=BP,推导格式:,温馨提示:垂径定理是圆中一个重要的定理,三种语言

3、要相互转化,形成整体,才能运用自如.,下列图形是否具备垂径定理的条件?如果不是,请说明为什么?,是,不是,因为没有垂直,是,不是,因为CD没有过圆心,议一议,垂径定理的几个基本图形:,例1 证明:圆的两条平行弦所夹的弧相等. 已知:如图,O中弦ABCD, 求证:ACBD.,证明:作直径MNAB. ABCD,MNCD. 则AMBM,CMDM AMCMBMDM ACBD,典例精析,例2 如图,O的弦AB8cm ,直径CEAB于D,DC2cm,求半径OC的长.,解:连接OA, CEAB于D,,设OC=xcm,则OD=x-2,根据勾股定理,得,解得 x=5,,即半径OC的长为5cm.,x2=42+(x

4、-2)2,,如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗? 过圆心 ;垂直于弦; 平分弦; 平分弦所对的优弧 ; 平分弦所对的劣弧。 上述五个条件中的任何两个条件都可以推出其他三个结论吗?,思考探索:,试一试,证明:连接OA、OB、CA、CB,则OA=OB.,即AOB是等腰三角形.,P是AB的中点,,ABCD.,即AP=BP,, CD是直径,CDAB,,思考:“不是直径”这个条件能去掉吗?如果不能,请举出反例.,平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两条弧.,垂径定理的推论,特别说明: 圆的两条直径是互相平分的.,垂径定理

5、的本质是:,满足其中任两条,必定同时满足另三条,(1)一条直线过圆心 (2)这条直线垂直于弦 (3)这条直线平分不是直径的弦 (4)这条直线平分不是直径的弦所对的优弧 (5)这条直线平分不是直径的弦所对的劣弧,例3 如图,在O中,点C是AB的中点,弦AB与半径OC相交于点D,AB=12,CD=2求的O半径,典例精析,解:连接AO, 点C是AB的中点, 半径OC与AB相交于点D, OCAB, AB=12,AD=BD=6, 设O的半径为R,CD=2, 在RtAOD中,由勾股定理得:AO2=OD2+AD2, 即:R2=(R-2)2+62,R=10 即,O的半径为10,你能利用垂径定理解决求赵州桥主桥

6、拱半径的问题吗?,试一试,解:如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.,经过圆心O作弦AB的垂线OC垂足为D,与弧AB交于点C,则D是AB的中点,C是弧AB的中点,CD就是拱高., AB=37m,CD=7.23m., AD= AB=18.5m,OD=OC-CD=R-7.23.,解得R27.3(m).,即主桥拱半径约为27.3m.,R2=18.52+(R-7.23)2,在圆中有关弦长a,半径r, 弦心距d(圆心到弦的距离),弓形高h的计算题,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.,涉及垂径定理时辅助线的添加方法,弦a,弦心距d,弓形高h,半径r之间

7、有以下关系:,弓形中重要数量关系,d+h=r,如图a、b,一弓形弦长为 cm,弓形所在的圆的半径为7cm,则弓形的高为_.,2cm或12cm,练一练,例4 如图,某窗户由矩形和弓形组成,已知弓形的跨度AB=6m,弓形的高EF=2m,现设计安装玻璃,请帮工程师求出弧AB所在圆O的半径,典例精析,解:弓形的跨度AB=6m,EF为弓形的高, OEAB于F,AF= AB=3m, 设AB所在圆O的半径为r,弓形的高EF=2m, AO=r,OF=r-2, 在RtAOF中,由勾股定理可知:AO2=AF2+OF2, 即r2=32+(r-2)2,解得r= m 即,AB所在圆O的半径为 m,当堂练习,1.如图,O

8、EAB于E,若O的半径为10cm,OE=6cm,则AB= cm.,16,O,A,B,E,2.如图,在O中,AB、AC为互相垂直且相等的两条弦,ODAB于D,OEAC于E,求证四边形ADOE是正方形,证明:,四边形ADOE为矩形,,又AC=AB, AE=AD, 四边形ADOE为正方形.,3.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。你认为AC和BD有什么关系?为什么?,证明:过O作OEAB,垂足为E, 则AEBE,CEDE。 AECEBEDE 即 ACBD.,5.(分类讨论题)已知O的半径为10cm,弦MNEF,且MN=12cm,EF=16cm,则弦MN和EF之间的距离为 .,14cm或2cm,4. 如图,在ABC中,已知ACB=130,BAC=20,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为_,6.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OECD,垂足为F,EF=90m.求这段弯路的半径.,解:连接OC.,设这段弯路的半径为Rm,则OF=(R-90)m.,根据勾股定理,得,解得R=545.,这段弯路的半径约为545m.,垂径定理,内容,推论,辅助线,一条直线满足:过圆心;垂直于弦; 平分弦(不是直径);

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论