数学北师大版九年级上册《应用一元二次方程》课件.ppt_第1页
数学北师大版九年级上册《应用一元二次方程》课件.ppt_第2页
数学北师大版九年级上册《应用一元二次方程》课件.ppt_第3页
数学北师大版九年级上册《应用一元二次方程》课件.ppt_第4页
数学北师大版九年级上册《应用一元二次方程》课件.ppt_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、6 应用一元二次方程,路程、速度和时间三者的关系是什么?,路程速度时间,我们这一节课就是要利用同学们刚才所回答的“路程速度时间”来建立一元二次方程的数学模型,并且解决一些实际问题,新课:,如图,某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D位于AC的中点,岛上有一补给码头:小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航,一般补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰(1)小岛D和小岛F相距多少海里? (2)已知军舰的速度是补给船的2倍, 军舰在由B到C的途中与补给船相遇于E 处

2、,那么相遇时补给船航行了多少海 里?(结果精确到0.1海里),分析:(1)因为依题意可知ABC是等腰直角三角形,DFC也是等腰直角三角形,AC可求,CD就可求,因此由勾股定理便可求DF的长(2)要求补给船航行的距离就是求DE的长度,DF已求,因此,只要在RtDEF中,由勾股定理即可求,1一个小球以5m/s的速度在平坦地面上开始滚动,并且均匀减速,滚动10m后小球停下来(1)小球滚动了多少时间?(2)平均每秒小球的运动速度减少多少?(3)小球滚动到5m时约用了多少时间(精确到0.1s)?,练习:,解:(1)小球滚动的平均速度=(5+0)2=2.5(m/s) 小球滚动的时间:102.5=4(s),

3、(2)平均每秒小球的运动速度减少为(50)2.5=2(m/s),(3)设小球滚动到5m时约用了xs,这时速度为(5-2x)m/s,则这段路程内的平均速度为5+(5-2x)2=(5-x)m/s, 所以x(5-x)=5 整理得:x2-5x+5=0 解方程:得x= x13.6(不合,舍去),x21.4(s) 答:刹车后汽车行驶到5m时约用1.4s,一辆汽车以20m/s的速度行驶,司机发现前方路面有情况,紧急刹车后汽车又滑行25m后停车(1)从刹车到停车用了多少时间?(2)从刹车到停车平均每秒车速减少多少?(3)刹车后汽车滑行的15m时约用了多少时间(精确到0.1s)?,(2)从刹车到停车平均每秒车速

4、减少值为 (初速度末速度)车速变化时间,,即,分析:(1)已知刹车后滑行路程为25m,如果知道滑行的平均速度,则根据路程、速度、时间三者的关系,可求出滑行时间为使问题简单化、不妨假设车速从20m/s到0m/s是随时间均匀变化的这段时间内的平均车速第一最大速度与最小速度的平均值,即 于是从刹车到停车的时间为,行驶路程平均车速,,即 25102.5(s).,(3)设刹车后汽车行驶到15m用了x s ,由(2)可知,这时车速为(208x)m/s,这段路程内的平均车速为 即(204x)m/s,由,刹车后乘车行驶到15m时约用了_s.,速度时间路程,,得 (204x)x15.,解方程,得,根据问题的实际

5、应如何正确选择正确答案.,刹车后汽车行驶到20m时约用了多少时间(精确到0.1s)?,设刹车后汽车行驶到20m用了x s ,由(2)可知,这时车速为(208x)m/s,这段路程内的平均车速为 即(204x)m/s,由,刹车后乘车行驶到15m时约用了_s.,速度时间路程,得 (204x)x20,解方程,得,根据问题的实际应取,练习1. 学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花

6、圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.,解: (1),方案1:长为 米,宽为7米;,方案2:长为16米,宽为4米;,方案3:长=宽=8米;,注:本题方案有无数种,(2)在长方形花圃周长不变的情况下,长方形花圃面积不能增加2平方米.,由题意得长方形长与宽的和为16米.设长方形花圃的长为x米,则宽为(16-x)米.,x(16-x)=63+2,,x2-16x+65=0,,此方程无解. 在周长不变的情况下,长方形花圃的面积不能增加2平方米.,例:某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作

7、草坪,并请全校同学参与设计,现在有两位学生各设计了一种方案(如图),根据两种设计方案各列出方程,求图中道路的宽分别是多少?使图(1),(2)的草坪面积为540米2.,补充例题与练习,解:(1)如图,设道路的宽为x米,则,化简得,,其中的 x=25超出了原矩形的宽,应舍去.,图(1)中道路的宽为1米.,则横向的路面面积为 ,,分析:此题的相等关系是矩形面积减去道路面积等于540米2.,解法一、 如图,设道路的宽为x米,,32x 米2,纵向的路面面积为 .,20 x 米2,注意:这两个面积的重叠部分是 x2 米2,所列的方程是不是,所以正确的方程是:,化简得,,其中的 x=50超出了原矩形的长和宽

8、,应舍去. 取x=2时,道路总面积为:,=100 (米2),答:所求道路的宽为2米.,解法二: 我们利用“图形经过移动,它的面积大小不会改变”的道理,把纵、横两条路移动一下,使列方程容易些(目的是求出路面的宽,至于实际施工,仍可按原图的位置修路),横向路面 ,,如图,设路宽为x米,,32x米2,纵向路面面积为 .,20 x米2,草坪矩形的长(横向)为 ,,草坪矩形的宽(纵向) .,相等关系是:草坪长草坪宽=540米2,(20-x)米,(32-x)米,即,化简得:,再往下的计算、格式书写与解法1相同.,课内练习:,1.如图是宽为20米,长为32米的矩形耕地,要修筑同样宽的三条道路(两条纵向,一条横向,且互相垂直),把耕地分成六块大小相等的试验地,要使试验地的面积为570平方米,问:道路宽为多少米?,解:设道路宽为x米,,则,化简

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论