




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、12.3 角的平分线的性质,1.在探究作角平分线的方法和角平分线性质的过程中,掌握角平分线的作法和角平分线的性质,发展数学直觉. 2.提高综合运用三角形全等的有关知识的解决能力;掌握简单的角平分线在生产、生活中的应用.,不利用工具,请你将一张用纸片做的角分成两个相等的角.你有什么办法?,再打开纸片 ,看看折痕与这个角有何关系?,对折,如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?,观察下面简易的平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是DAB的平分线.你能说明它的道理吗?,【证明】 在ACD和ACB中
2、 AD=AB(已知) DC=BC(已知) CA=CA(公共边) ACD ACB(SSS) CAD=CAB(全等三角形的对应角相等) AC平分DAB(角平分线的定义),根据角平分仪的制作原理怎样作一个角的平分线?(不用角平分仪或量角器),尺规作角的平分线,画法:,1.以为圆心,适当长为半径作弧,交于,交于,2.分别以,为圆心大于 的长为半径作弧两弧在AOB的内部交于,3.作射线OC,射线OC即为所求,为什么OC是的角平分线?,将AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?,猜想:角的平分线上的点到角的两边的距离相等.,已知:OC
3、平分AOB,点P在OC上,PDOA于D, PEOB于E,,求证: PD=PE.,证明: C平分, P是OC上一点(已知) DP=BP(角平分线定义) PDOA,PEOB (已知) ODP=OEP=90(垂直的定义) 在OPD和OPE中 DOP=BOP (已证) ODP=OEP (已证) OP=OP(已知) OPDOPE(AAS) PDPE(全等三角形对应边相等),定理:角平分线上的点到角的两边的距离相等.,用符号语言表示为:,1= 2 PD OA ,PE OB PD=PE.,角平分线的性质,如图,要在S区建一个贸易市场,使它到铁路和公路距离相等, 离公路与铁路交叉处500米,这个集贸市场应建在
4、何处?(比例尺为120000),D,C,s,【解析】 作夹角的角平分线OC,截取OD=2.5cm ,D即为所求.,O,反过来,到一个角的两边的距离相等的点是否一定在这个角的平分线上呢?,已知:如图,QDOA,QEOB, 点D、E为垂足,QDQE 求证:点Q在AOB的平分线上,证明: QDOA,QEOB QDOQEO90(垂直的定义)在RtQDO和RtQEO中 QOQO(公共边) QD=QE RtQDORtQEO(HL) QODQOE 点Q在AOB的平分线上,到角的两边的距离相等的点在角的平分线上.,(1). 1= 2,DCAC, DEAB _ (_) (2). DCAC ,DEAB ,DC=D
5、E _ (_),1= 2,DC=DE,到一个角的两边的距离相等的点,在这个角平分线上.,在角平分线上的点到角的两边的距离相等,1.已知:如图,在ABC中,AD是它的角平分线,且 BD=CD,DEAB,DFAC,垂足分别是E,F. 求证:EB=FC.,【解析】根据角平分线的性质得到DE=DF,再根据HL证BEDCFD,从而得到EB=FC.,2.直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有:( )A.一处 B.两处 C.三处 D.四处,【解析】选D.由于没有限制在何处选址,故要求的地址共有四处,在各自夹角的平分线上,即:A、B、C、D各一处.,3.(宁德中考)如图,已知AD是ABC的角平分线,在不添加任何辅助线的前提下,要使AEDAFD,需添加一个条件是:_,并给予证明.,c,解法一:添加条件:AEAF, 在AED与AFD中, AEAF,EADFAD,ADAD, AEDAFD(SAS). 解法二:添加条件:EDAFDA, 在AED与AFD中, EADFAD,ADAD,EDAFDA, AED
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 雾化吸入中药使用流程
- 幼儿园教师团队合作能力培训计划
- 科学安排考试复习时间的措施
- 科研项目中跨部门协调配合措施
- 2025年体育教师专业发展读书计划
- 大学生校园文化建设方案范文
- 建筑设计与管理的实习总结
- 风电项目开发流程实例分析
- 过渡金属(钴-铁)基异质复合材料的制备及其电解水催化性能研究
- 面向计算思维培养的问题解决式教学活动设计与实践-以初中Python课程为例
- 2023-2024学年上海市杨浦区八年级(下)期中英语试卷
- 《急性缺血性卒中血管内治疗中国指南2023》解读
- (高清版)DZT 0222-2006 地质灾害防治工程监理规范
- 数学趣味讲座:邀请数学领域专家进行趣味讲座激发学生对数学的兴趣
- 心脏瓣膜疾病一病一品
- YS-T 3038-2020 黄金生产用颗粒活性炭
- 一张纸的劳动合同书范文
- 新生儿低蛋白血症指南课件
- 四川省宜宾市2023-2024学年八年级上学期期末义务教育阶段教学质量监测英语试题
- 如何成长为战略业务伙伴hrbp
- 温州特色小吃介绍课件
评论
0/150
提交评论