




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 课题:数列复习专题(3)班级: 姓名: 学号: 第 学习小组【学习目标】初步了解通过数列递推公式求通项的方法;初步了解通过数列前项和求通项以及相关内容的方法【课前预习】1如果已知数列为等差(或等比)数列,可直接根据等差(或等比)数列的通项公式,求得,(或),然后直接套用公式2对于形如型或形如型的数列,其中又是等差数列或等比数列,可以根据递推公式,写出取到时的所有递推关系式,然后将它们分别相加(或相乘)即可得到通项公式3有些数列本身不是等差或等比数列,但可以经过适当的变形,构造出一个新的等差或等比数列,从而利用这个数列求其通相公式,这叫做构造法例如:在数列中,如何求通项公式?4已知数列的前项和
2、求通项时,常用公式,用此公式时应注意结论有两种可能,一种是“一分为二”,即分段式;另一种是“合二为一”,即和合为一个表达式。【课堂研讨】例1已知数列中,(1),求;(2),求;(3),求例2.已知数列中,求的通项例3.已知数列中,(1)求的通项公式;(2)求的通项公式; (3)求的前项和例4.已知数列满足,求的通项和前项和【学后反思】 课题:数列复习(3)检测案班级: 姓名: 学号: 第 学习小组【课堂检测】1已知数列满足,求的通项2根据下列条件求的通项:(1);(2)【课外作业】1已知数列中,求:(1)的通项;(2)令,的通项;(3)的前项和2. 已知数列中,(1)求的通项;(2)当为何值时,是等比数列3已知数列中,(1)求证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 稻盛和夫创业者的故事
- 施工合同水电工
- 2024深圳市携创高级技工学校工作人员招聘考试及答案
- 2024河北省石家庄市高级技工学校工作人员招聘考试及答案
- 2024海东市中等职业技术学校工作人员招聘考试及答案
- 中考语文对联知识
- 植物模拟试题+参考答案
- 种植基地与供应商合作合同
- 市政基础设施工程承包合同书
- 脑梗死的基础护理
- 小牛在线2018第四季度营销方案20181106
- 职业院校“金课”建设方案
- 医疗护理员基础理论知识考试试题题库及答案
- 医疗手术室物品清点课件
- JT-T-1051-2016城市轨道交通运营突发事件应急预案编制规范
- 山东省济南市槐荫中区2023-2024学年八年级下学期期中考试物理试卷
- 艺术中国智慧树知到期末考试答案2024年
- 30道计量员岗位常见面试问题含HR问题考察点及参考回答
- (正式版)YST 1694-2024 铅冶炼企业节能诊断技术规范
- 《纸质文物修复与保护》课件-34分解古籍实
- 内训师选拔方案
评论
0/150
提交评论