下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课 题:平面向量的坐标运算教学目的:(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;(3)会根据向量的坐标,判断向量是否共线。教学重点:平面向量的坐标运算教学难点:向量的坐标表示的理解及运算的准确性授课类型:新授课课时安排:1课时教学过程:一、复习引入:1.向量的加法:求两个向量和的运算,叫做向量的加法。向量加法的三角形法则和平行四边形法则。2向量加法的交换律:+=+3向量加法的结合律:(+) +=+ (+)4向量的减法向量a加上的b相反向量,叫做a与b的差。即:a - b = a + (-b) 5差向量的意义: = a, = b, 则= a - b 即a - b可以表示为从向量
2、b的终点指向向量a的终点的向量。6实数与向量的积:实数与向量的积是一个向量,记作:(1)|=|;(2)0时与方向相同;0时与方向相反;=0时=7运算定律 ()=(),(+)=+,(+)=+ 8 向量共线定理 向量与非零向量共线的充要条件是:有且只有一个非零实数,使=。9平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数1,2使=1+2(1)我们把不共线向量、叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量在给出基底、的条件下进行分解;(4)基底给定时,分解形式惟一. 1,2是被,唯一确定的数量10平
3、面向量的坐标表示 分别取与轴、轴方向相同的两个单位向量、作为基底。任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得把叫做向量的(直角)坐标,记作其中叫做在轴上的坐标,叫做在轴上的坐标, 特别地,。11平面向量的坐标运算若,则,。若,则二、讲解新课: ()的充要条件是x1y2-x2y1=0设=(x1, y1) ,=(x2, y2) 其中由=得, (x1, y1) =(x2, y2) 消去,x1y2-x2y1=0探究:(1)消去时不能两式相除,y1, y2有可能为0, x2, y2中至少有一个不为0(2)充要条件不能写成 x1, x2有可能为0(3)从而向量共线的充要条件有两种形式:
4、()三、讲解范例:例1若向量=(-1,x)与=(-x, 2)共线且方向相同,求x解:=(-1,x)与=(-x, 2) 共线 (-1)2- x(-x)=0 x= 与方向相同 x= 例2 已知A(-1, -1), B(1,3), C(1,5) ,D(2,7) ,向量与平行吗?直线AB与平行于直线CD吗? 解:=(1-(-1), 3-(-1)=(2, 4) , =(2-1,7-5)=(1,2) 又 22-41=0 又 =(1-(-1), 5-(-1)=(2,6) =(2, 4) 24-260 与不平行 A,B,C不共线 AB与CD不重合 ABCD四、课堂练习:1.若a=(2,3),b=(4,-1+y
5、),且ab,则y=( )A.6 B.5 C.7 D.82.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为( )A.-3 B.-1 C.1 D.33.若=i+2j, =(3-x)i+(4-y)j(其中i、j的方向分别与x、y轴正方向相同且为单位向量). 与共线,则x、y的值可能分别为( ) A.1,2 B.2,2 C.3,2 D.2,44.已知a=(4,2),b=(6,y),且ab,则y= .5.已知a=(1,2),b=(x,1),若a+2b与2a-b平行,则x的值为 .6.已知平行四边形ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x= .
6、参考答案:1.C 2.B 3.B 4. 3 5. 6. 5五、小结 向量平行的充要条件(坐标表示)六、课后作业:1.若a=(x,y),b=(x,y),且ab,则坐标满足的条件为( ) A.xx B.C. D.2.设a=(,sin),b=(,),且ab,则锐角为( )A.30 B.60 C.45 D.753.设k,下列向量中,与向量a=(1,-1)一定不平行的向量是( )A.(k,k) B.(-k,-k)C.(k,) D.(,)4.若A(-1,-1),B(1,3),C(x,5)三点共线,则x= .5.已知a=(3,2),b=(2,-1),若a+b与a+b()平行,则 . 6.若a=(-1,x)与b=(-x,2)共线且方向相同,则x= .7.已知a=(1,2),b=(-3,2),当k为何值时ka+b与a-3b平行?8.已知A、B、C、D四点坐标分别为A(1,0),B(4,3),C(2,4),D(0,2),试
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课件图片没了教学课件
- 2024年度知识产权许可合同补充协议
- 2024年太阳能路灯物流与仓储服务合同
- 2024化工厂建设土石方运输合同
- 04年新一代移动通信技术研发合同
- 2024年度企业招聘外包合同
- 2024规范版汽车租赁合同
- 课程课件封面教学课件
- 2024年国际货物买卖合同标的数量与质量检验标准详解
- 2024学校校园广告投放合同
- 2024年企业数据存储与安全服务合同
- 2022年北京市公务员录用考试《行测》真题及答案解析
- 2024年消防宣传月知识竞赛考试题库500题(含答案)
- 2024年典型事故案例警示教育手册15例
- 高一历史(中外历史纲要上册)期中测试卷及答案
- 20K607 防排烟及暖通防火设计审查与安装
- 一氧化碳中毒培训课件
- 教案(餐巾折花)
- 金山江天寺规约
- 三相四线制功率计算原理及计算方法(讲得很好)
- 南邮综合设计报告(课程设计)proteus和Keil
评论
0/150
提交评论