




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学小故事:圆周率的计算历程_这一不寻常的公式是的最早分析表达式。甚至在今天,这个公式的优美也会令我们赞叹不已。它表明仅仅借助数字2,通过一系列的加、乘、除和开平方就可算出值。接着有多种表达式出现。如沃利斯1650年给出:1706年,梅钦建立了一个重要的公式,现以他的名字命名:再利用分析中的级数展开,他算到小数后100位。这样的方法远比可怜的鲁道夫用大半生时间才抠出的35位小数的方法简便得多。显然,级数方法宣告了古典方法的过时。此后,对于圆周率的计算像马拉松式竞赛,纪录一个接着一个:1844年,达塞利用公式:算到200位。19世纪以后,类似的公式不断涌现,的位数也迅速增长。1873年,谢克斯利
2、用梅钦的一系列方法,级数公式将算到小数后707位。为了得到这项空前的纪录,他花费了二十年的时间。他死后,人们将这凝聚着他毕生心血的数值,铭刻在他的墓碑上,以颂扬他顽强的意志和坚韧不拔的毅力。于是在他的墓碑上留下了他一生心血的结晶:的小数点后707位数值。这一惊人的结果成为此后74年的标准。此后半个世纪,人们对他的计算结果深信不疑,或者说即便怀疑也没有办法来检查它是否正确。以致于在1937年巴黎博览会发现馆的天井里,依然显赫地刻着他求出的值。又过了若干年,数学家弗格森对他的计算结果产生了怀疑,其疑问基于如下猜想:在的数值中,尽管各数字排列没有规律可循,但是各数码出现的机会应该相同。当他对谢克斯的
3、结果进行统计时,发现各数字出现次数过于参差不齐。于是怀疑有误。他使用了当时所能找到的最先进的计算工具,从1944年5月到1945年5月,算了整整一年。1946年,弗格森发现第528位是错的(应为4,误为5)。谢克斯的值中足足有一百多位全都报了销,这把可怜的谢克斯和他的十五年浪费了的光阴全部一笔勾销了。对此,有人曾嘲笑他说:数学史在记录了诸如阿基米德、费马等人的著作之余,也将会挤出那么一、二行的篇幅来记述1873年前谢克斯曾把计算到小数707位这件事。这样,他也许会觉得自己的生命没有虚度。如果确实是这样的话,他的目的达到了。人们对这些在地球的各个角落里作出不懈努力的人感到不可理解,这可能是正常的
4、。但是,对此做出的嘲笑却是过于残忍了。人的能力是不同的,我们无法要求每个人都成为费马、高斯那样的人物。但成为不了伟大的数学家,并不意味着我们就不能为这个社会做出自己有限的贡献。人各有其长,作为一个精力充沛的计算者,谢克斯愿意献出一生的大部分时光从事这项工作而别无报酬,并最终为世上的知识宝库添了一小块砖加了一个块瓦。对此我们不应为他的不懈努力而感染并从中得到一些启发与教育吗?1948年1月弗格森和伦奇两人共同发表有808位正确小数的。这是人工计算的最高记录。计算机时期1946年,世界第一台计算机eniac制造成功,标志着人类历史迈入了电脑时代。电脑的出现导致了计算方面的根本革命。1949年,en
5、iac根据梅钦公式计算到2035(一说是2037)位小数,包括准备和整理时间在内仅用了70小时。计算机的发展一日千里,其记录也就被频频打破。eniac:一个时代的开始1973年,有人就把圆周率算到了小数点后100万位,并将结果印成一本二百页厚的书,可谓世界上最枯燥无味的书了。1989年突破10亿大关,1995年10月超过64亿位。1999年9月30日,文摘报报道,日本东京大学教授金田康正已求到2061.5843亿位的小数值。如果将这些数字打印在a4大小的复印纸上,令每页印2万位数字,那么,这些纸摞起来将高达五六百米。来自最新的报道:金田康正利用一台超级计算机,计算出圆周率小数点后一兆二千四百一
6、十一亿位数,改写了他本人两年前创造的纪录。据悉,金田教授与日立制作所的员工合作,利用目前计算能力居世界第二十六位的超级计算机,使用新的计算方法,耗时四百多个小时,才计算出新的数位,比他一九九九年九月计算出的小数点后二千六百一十一位提高了六倍。圆周率小数点后第一兆位数是二,第一兆二千四百一十一亿位数为五。如果一秒钟读一位数,大约四万年后才能读完。不过,现在打破记录,不管推进到多少位,也不会令人感到特别的惊奇了。实际上,把的数值算得过分精确,应用意义并不大。现代科技领域使用的值,有十几位已经足够。如果用鲁道夫的35位小数的值计算一个能把太阳系包围起来的圆的周长,误差还不到质子直径的百万分之一。我们
7、还可以引美国天文学家西蒙纽克姆的话来说明这种计算的实用价值:十位小数就足以使地球周界准确到一英寸以内,三十位小数便能使整个可见宇宙的四周准确到连最强大的显微镜都不能分辨的一个量。那么为什么数学家们还象登山运动员那样,奋力向上攀登,一直求下去而不是停止对的探索呢?为什么其小数值有如此的魅力呢?这其中大概免不了有人类的好奇心与领先于人的心态作怪,但除此之外,还有许多其它原因。奔腾与圆周率之间的奇妙关系1、它现在可以被人们用来测试或检验超级计算机的各项性能,特别是运算速度与计算过程的稳定性。这对计算机本身的改进至关重要。就在几年前,当intel公司推出奔腾(pentium)时,发现它有一点小问题,这
8、问题正是通过运行的计算而找到的。这正是超高精度的计算直到今天仍然有重要意义的原因之一。2、 计算的方法和思路可以引发新的概念和思想。虽然计算机的计算速度超出任何人的想象,但毕竟还需要由数学家去编制程序,指导计算机正确运算。实际上,确切地说,当我们把的计算历史划分出一个电子计算机时期时,这并非意味着计算方法上的改进,而只是计算工具有了一个大飞跃而已。因而如何改进计算技术,研究出更好的计算公式,使公式收敛得更快、能极快地达到较大的精确度仍是数学家们面对的一个重要课题。在这方面,本世纪印度天才数学家拉马努扬得出了一些很好的结果。他发现了许多能够迅速而精确地计算近似值的公式。他的见解开通了更有效地计算
9、近似值的思路。现在计算机计算值的公式就是由他得到的。至于这位极富传奇色彩的数学家的故事,在这本小书中我们不想多做介绍了。不过,我希望大家能够明白的故事讲述的是人类的胜利,而不是机器的胜利。3、还有一个关于的计算的问题是:我们能否无限地继续算下去?答案是:不行!根据朱达偌夫斯基的估计,我们最多算1077位。虽然,现在我们离这一极限还相差很远很远,但这毕竟是一个界限。为了不受这一界限的约束,就需要从计算理论上有新的突破。前面我们所提到的计算,不管用什么公式都必须从头算起,一旦前面的某一位出错,后面的数值完全没有意义。还记得令人遗憾的谢克斯吗?他就是历史上最惨痛的教训。4、于是,有人想能否计算时不从
10、头开始,而是从半截开始呢?这一根本性的想法就是寻找并行算法公式。1996年,圆周率的并行算法公式终于找到,但这是一个16进位的公式,这样很容易得出的1000亿位的数值,只不过是16进位的。是否有10进位的并行计算公式,仍是未来数学的一大难题。5、作为一个无穷数列,数学家感兴趣的把展开到上亿位,能够提供充足的数据来验证人们所提出的某些理论问题,可以发现许多迷人的性质。如,在的十进展开中,10个数字,哪些比较稀,哪些比较密?的数字展开中某些数字出现的频率会比另一些高吗?或许它们并非完全随意?这样的想法并非是无聊之举。只有那些思想敏锐的人才会问这种貌似简单,许多人司空见惯但却不屑发问的问题。6、数学
11、家弗格森最早有过这种猜想:在的数值式中各数码出现的概率相同。正是他的这个猜想为发现和纠正向克斯计算值的错误立下了汗马功劳。然而,猜想并不等于现实。弗格森想验证它,却无能为力。后人也想验证它,也是苦于已知的值的位数太少。甚至当位数太少时,人们有理由对猜想的正确性做出怀疑。如,数字0的出现机会在开始时就非常少。前50位中只有1个0,第一次出现在32位上。可是,这种现象随着数据的增多,很快就改变了:100位以内有8个0;200位以内有19个0;1000万位以内有999,440个0;60亿位以内有599,963,005个0,几乎占110。其他数字又如何呢?结果显示,每一个都差不多是110,有的多一点,
12、有的少一点。虽然有些偏差,但都在110000之内。7、人们还想知道:的数字展开真的没有一定的模式吗?我们希望能够在十进制展开式中通过研究数字的统计分布,寻找任何可能的模型如果存在这种模型的话,迄今为止尚未发现有这种模型。同时我们还想了解:的展开式中含有无穷的样式变化吗?或者说,是否任何形式的数字排列都会出现呢?著名数学家希尔伯特在没有发表的笔记本中曾提出下面的问题:的十进展开中是否有10个9连在一起?以现在算到的60亿位数字来看,已经出现:连续6个9连在一起。希尔伯特的问题答案似乎应该是肯定的,看来任何数字的排列都应该出现,只是什么时候出现而已。但这还需要更多的数位的计算才能提供切实的证据。8
13、、在这方面,还有如下的统计结果:在60亿数字中已出现连在一起的8个8;9个7;10个6;小数点后第710150位与3204765位开始,均连续出现了七个3;小数点52638位起连续出现了14142135这八个数字,这恰是的前八位;小数点后第2747956位起,出现了有趣的数列876543210,遗憾的是前面缺个9;还有更有趣的数列123456789也出现了。如果继续算下去,看来各种类型的数字列组合可能都会出现。拾零:的其它计算方法在1777年出版的或然性算术实验一书中,蒲丰提出了用实验方法计算。这个实验方法的操作很简单:找一根粗细均匀,长度为d的细针,并在一张白纸上画上一组间距为l的平行线(方
14、便起见,常取l = d/2),然后一次又一次地将小针任意投掷在白纸上。这样反复地投多次,数数针与任意平行线相交的次数,于是就可以得到的近似值。因为蒲丰本人证明了针与任意平行线相交的概率为p = 2l/d。利用这一公式,可以用概率方法得到圆周率的近似值。在一次实验中,他选取l = d/2,然后投针2212次,其中针与平行线相交704次,这样求得圆周率的近似值为 2212/704 = 3.142。当实验中投的次数相当多时,就可以得到的更精确的值。1850年,一位叫沃尔夫的人在投掷5000多次后,得到的近似值为3.1596。目前宣称用这种方法得到最好结果的是意大利人拉兹瑞尼。在1901年,他重复这项实验,作了3408次投针,求得的近似值为3.1415929,这个结果是如此准确,以致于很多人怀疑其实验的真伪。如美国犹他州奥格登的国立韦伯大学的l巴杰就对此提出过有力的质疑。不过,蒲丰实验的重要性并非是为了求得比其它方法更精确的值。蒲丰投针问题的重要性在于它是第一个用几何形式表达概率问题的例子。计算的这一方法,不但因其新颖,奇妙而让人叫绝,而且它开创了使用随机数处理确定性数学问题的先河,是用偶然性方法去解决确定性计算的前导。在用概率方法计算值中还要提到的是:r查特在1904年发现,两个随意写出的数中,互素的概率为62。1995
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重庆城市管理职业学院《应用中子物理学》2023-2024学年第二学期期末试卷
- 山东省德州市八校2025届下学期初三第三次质量考评物理试题含解析
- 湖南农业大学《药物分析A实验》2023-2024学年第一学期期末试卷
- 2025年辽宁省葫芦岛市第一中学高三第一次诊断性考试生物试题文试题含解析
- 微课程的设计与应用
- 江西省宜春九中2025届高三广东六校高考模拟考试物理试题及参考答案含解析
- 滑膜炎超声诊断
- 2025年广西崇左市江州区初三5月质量检测试题巩固卷物理试题含解析
- 景德镇陶瓷职业技术学院《一阶逻辑》2023-2024学年第二学期期末试卷
- 河北省临西县2025届高三下期中考数学试题含解析
- 商务楼监控室操作守则
- 搞好班组安全管理工作
- 2024年山东省济南市市中区九年级中考二模数学试题 (原卷版+解析版)
- 生物医学体系的确立与发展
- 社会心理学(西安交通大学)智慧树知到期末考试答案2024年
- 行政管理学#-形考任务4-国开(ZJ)-参考资料
- 2024中国餐饮加盟行业白皮书-ccfax美团-202404
- 2024年山东省济南市莱芜区中考一模语文试卷
- 用工审批单(模板)
- 极光大数据:王者荣耀研究报告
- 古诗词诵读《客至》高二语文课件(统编版选择性必修下册)
评论
0/150
提交评论