《勾股定理》课件_第1页
《勾股定理》课件_第2页
《勾股定理》课件_第3页
《勾股定理》课件_第4页
《勾股定理》课件_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、弦图,这个图形里蕴涵着怎样博大精深的知识呢?,它标志着我国古代数学的伟大成就!,4,4,8,SA+SB=SC,C,图甲,1.观察图甲,小方格 的边长为1. 正方形A、B、C的 面积各为多少?,正方形A、B、C的 面积有什么关系?,C,图乙,2.观察图乙,小方格 的边长为1. 正方形A、B、C的 面积各为多少?,9,16,25,SA+SB=SC,正方形A、B、C的 面积有什么关系?,4,4,8,SA+SB=SC,图甲,图乙,2.观察图乙,小方格 的边长为1.,9,16,25,SA+SB=SC,正方形A、B、C的 面积有什么关系?,4,4,8,SA+SB=SC,图甲,a,b,c,a,b,c,3.猜

2、想a、b、c 之间的关系?,a2 +b2 =c2,a,a,a,a,b,b,b,b,c,c,c,c,用拼图法证明,用拼图法证明,用拼图法证明,S大正方形=(a+b)2=a2+b2+2ab S大正方形=4S直角三角形+ S小正方形 =4 ab+c2 =c2+2ab,a2+b2+2ab=c2+2ab,a2 +b2 =c2,a2+b2+2ab,c2+2ab,勾股定理(毕达哥拉斯定理)(gougu theorem),如果直角三角形两直角边分别为a, b,斜边为c,那么,即直角三角形两直角边的平方和等于 斜边的平方.,a,c,勾,弦,b,股,结论变形,c2 = a2 + b2,练习: 1、求下列图中字母所

3、表示的正方形的面积,=625,=144,商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作周髀算经中记录着商高同周公的一段对话。商高说:故折矩,勾广三,股修四,经隅五。什么是勾、股呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为勾,下半部分称为股。商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成勾三股四弦五。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作商高定理。,商高定理,毕达格拉斯定理,毕达哥拉斯有次应邀参加一位富有政要的餐会,这位

4、主人豪华宫殿般的餐厅铺着是正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言;但这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形磁砖,但毕达哥拉斯不只是欣赏磁砖的美丽,而是想到它们和数之间的关系,于是 拿了画笔并且蹲在地板上,选了一块磁砖以它的对角线 AB为边画一个正方形,他发现这个正方形面积恰好等于两块磁砖的面积和。他很好奇. 于是再以两块磁砖拼成的矩形之对角线作另一个正方形,他发现这个正方形之面积等于5块磁砖的面积,也就是以两股为边作正方形面积之和。至此毕达哥拉斯作了大胆的假设: 任何直角三角形,其斜边的平方恰好等于另两边平方之和。那一顿饭,这位古希腊数学大

5、师,视线都一直没有离开地面。,希腊的著明数学家毕达格拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达格拉斯”定理为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”,百牛定理,选一选,已知ABC的三边分别是a,b,c, 若B=Rt,则有关系式( ),A.a2+b2=c2,B.a2+c2=b2,C.a2-b2=c2,D.b2+c2=a2,B,A,B,C,8,6,算一算,AC2=AB2+BC2=62+82=100 AC=100 = 10,A,B,C,求图中直角三角形的未知边的长度。,在RtABC中,根据勾股定理,,练习: 一判断题. 1.AB

6、C的两边AB=5,AC=12,则BC=13 ( ) 2. ABC的a=6,b=8,则c=10 ( ) 二填空题 1.在 ABC中, C=90,AC=6,CB=8,则 ABC面积为_,斜边为上的高为_.,24,4.8,A,B,C,D,2、已知在RtABC中,C=90,AB=10。 若A=30,则BC=_,AC=_; 若A=45,则BC=_,AC=_。 3、已知等边三角形ABC的边长是a求: (1)高AD的长; (2)ABC的面积。,若a=5,b=12, 则c =_.,试一试,在RtABC中,,13,当c是斜边时, c2= a2+b2,当b是斜边时, b2= a2+c2,13或119,数学的和谐美,、本节课我们经历了怎样的学习过程?,经历了从实际问题引入数学问题然后发现定理,再到探索定理,最后学会验证定理及应用定理解决实际问题的过程。,、本节课我们学到了什么?,通过本节课的学习我们不但知道了著名的勾股定理,还知道从特殊到一般的探索方法及借助于图形的面积来探索、验证数学结论的数形结合思想。,、学了本节课后你有什么感想?,很多的数学结论存在于平常的生活中,需要我们用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论