




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第十九课时 指数函数(4)【学习导航】学习要求:1、巩固指数函数的图象及其性质;2、掌握由指数函数和其他简单函数组成的复合函数性质;【精典范例】一、 复合函数的定义域与值域例1、求下列函数的定义域与值域。(1)y=;(2)y=;(3)y=思维分析:y=a的定义域是f(x)的定义域;对于值域,要先求出f(x) 值域再利用指数函数单调性求解。二、利用复合函数单调性来解题例2、求函数y=的单调区间。点评:y=a的单调性由a和u=f(x)两函数在相应区间上单调性确定的,遵循“同增异减”法则。三、利用图象的性质比较大小例3、已知函数f(x)=ax(a0,且a1),根据图象判断f(x1)+f(x2)与f(
2、)的大小,并加以证明。四、分类讨论思想在解题中的应用例4、已知f(x)=(exa)+ (exa)(a0)。(1) f(x)将表示成u= 的函数;(2) 求f(x)的最小值思维分析:平方展开重新配方,就可以得到所求函数的形式;然后根据二次函数的知识确定最值。点评:这是复合函数求最值问题,为了求得最值,通过换元转化为二次函数,再由二次函数在区间上的单调性确定最值。追踪训练1、求下列函数定义域和值域.(1)y=;(2)y=2、求函数y=的单调区间.3、已知f(x)=(a0且a)(1)求f(x)的定义域和值域;(2)判断f(x)与的关系;(3)讨论f(x)的单调性;,4、已知g(x)=()x(x0),而f(x)是定义在(,0)(0,+)上的奇函数,且当x0时,f(x)=g(x),则f(x)的解析式为_ _.5、设a是实数,f(x)=.(1)证明:不论a为何实数,f(x)均为增函数;(2)试
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人车租合同样本
- 共同交易二手房合同标准文本
- 人才派遣服务合同样本
- 供水维修安装合同标准文本
- 食用冰块供货合同范本
- 信息咨询合同范例 英文
- 供暖管线维修合同标准文本
- 个人鲜花购销合同样本
- 2025公共服务项目承建合同
- 体能器材出租合同样本
- 医院康复信息系统建设需求
- SL721-2015水利水电工程施工安全管理导则
- 2024年广东省万阅大湾区百校联盟中考一模数学试题
- 数字贸易学 课件 马述忠 第13-22章 数字贸易综合服务概述- 数字贸易规则构建与WTO新一轮电子商务谈判
- 2024年电路保护元器件行业营销策略方案
- 下肢动静脉溃疡的护理
- 照明维护方案
- 设备管理制度的风险评估与防范方案
- 办公楼装饰工程设计及施工招标文件室内装饰
- 半导体行业对国家国防战略的支撑与应用
- 2024年十堰市中小学教师职称晋升水平能力测试题附答案
评论
0/150
提交评论