2[1].1.1合情推理.ppt_第1页
2[1].1.1合情推理.ppt_第2页
2[1].1.1合情推理.ppt_第3页
2[1].1.1合情推理.ppt_第4页
2[1].1.1合情推理.ppt_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、合情推理 归纳推理,什么是推理?,推理是人们思维活动的过程,是根据一个或 几个已知的判断来确定一个新的判断的思维过程。,费马猜想:,每幅地图可以用四种颜色着色,使得有共同边界的相邻区域着上不同色.,四色猜想,1852年,英国人弗南西斯格思里为地图着色时,发现了四色猜想.,1976年,美国数学家阿佩尔与哈肯在两台计算机上,用了1200个小时,完成了四色猜想的证明.,歌德巴赫猜想的提出过程: 3710,31720,131730,,“任何一个不小于6的偶数都等于两个奇质数之和”,即:偶数奇质数奇质数,改写为:1037,20317,301317,63+3, 100029+971, 83+5, 1002

2、=139+863, 105+5, 125+7, 147+7, ,,歌德巴赫猜想:,哥德巴赫猜想(Goldbach Conjecture) 在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t ”问题)之进展情况如下: 1920年,挪威的布朗(Brun)证明了 “9 + 9 ”。 1924年,德国的拉特马赫(Rademacher)证明了“7 + 7 ”。 1932年,英国的埃斯特曼(Estermann)证明了 “6 + 6 ”。 1937年,意大利的蕾西(Ricei)先後证明了“5 + 7 ”, “4 + 9 ”, “3 + 15 ”和“2 + 366 ”。 1

3、938年,苏联的布赫 夕太勃(Byxwrao)证明了“5 + 5 ”。 1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4 + 4 ”。 1948年,匈牙利的瑞尼(Renyi)证明了“1 + c ”,其中c是一很大的自然 数。 1956年,中国的王元证明了 “3 + 4 ”。 1957年,中国的王元先後证明了 “3 + 3 ”和 “2 + 3 ”。 1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1 + 5 ”, 中国的王元证明了“1 + 4 ”。 1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombi

4、eri)证明了“1 + 3 ”。 1966年,中国的陈景润证明了 “1 + 2 ”。 最终会由谁攻克 “1 + 1 ”这个难题呢?现在还没法预测。,由某类事物的 具有某些特征, 推出该类事物的 都具有这些特征 的推理,或者由 概括出 的推理,称为归纳推理(简称归纳).,部分对象,全部对象,个别事实,一般结论,归纳推理,1,3,5,7,由此你猜想出第 个数是_.,这就是从部分到整体,从个别到一般的归纳推理.,你想起来了吗?,成语“一叶知秋”,统计初步中的用样本估计总体,通过从总体中抽取部分对象进 行观测或试验,进而对整体做出推断.,意思是从一片树叶的凋落,知道秋 天将要来到.比喻由细微的迹象看出

5、整体 形势的变化,由部分推知全体.,归纳推理的基础,归纳推理的作用,归纳推理,观察、分析,发现新事实、获得新结论,由部分到整体、 个别到一般的推理,注意,归纳推理的结论不一定成立,在创造发明中, 人们经常应用 类比,可能有生命存在,有生命存在,温度适合生物的生存,一年中有四季的变更,有大气层,行星、围绕太阳运行、绕轴自转,火星,地球,火星上是否存在生命,火星与地球类比的思维过程:,火星,地球,存在类似特征,由两类对象具有某些类似特征和其中 一类对象的某些已知特征,推出另一类对 象也具有这些特征的推理称为类比推理.,类比推理,1、进行类比推理的步骤:,(1)找出两类对象之间可以确切表述的相似特征;,(2)用一类对象的已知特征去猜测另一类对象的特征,从而得出一个猜想;,(3)检验这个猜想.,2、类比推理的一般模式:,所以B类事物可能具有性质d.,A类事物具有性质a,b,c,d,B类事物具有性质a,b,c,(a,b,c与a,b,c相似或相同),观察、比较,联想、类推,猜想新结论,试根据等式的性质猜想不等式的性质.,类比推理的结论不一定成立.,让我们一起来类比推理,例题:类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想。,类比推理,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论