




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3.1.2 用二分法求方程的近似解,(2)能借助计算器用二分法求方程的近似解;,(3)体会数学逼近过程,感受精确与近似的相对统一,(1)通过具体实例理解二分法的概念及其适用条件, 了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用;,在一个风雨交加的夜里,从某水库闸房到防洪指挥部的电话线路发生了故障这是一条10km长的线路,如何迅速查出故障所在?如果沿着线路一小段一小段查找,困难很多每查一个点要爬一次电线杆,10km长,大约有200多根电线杆呢想一想,维修线路的工人师傅怎样工作最合理?,如图,设闸门和指挥部的所在处为点A,B,B,6.这样每查一次,就可以把待
2、查的线路长度缩减一半,1.首先从中点C查,2.用随身带的话机向两端测试时,发现AC段正常,断定 故障在BC段,3.再到BC段中点D,4.这次发现BD段正常,可见故障在CD段,5.再到CD中点E来看,这样每查一次,就可以把待查线路长度缩减为一半,故经过7次查找,就可以将故障发生的范围缩小到50100m左右,即在一两根电线杆附近这在现实生活中也有许多重要的应用其思想方法在生活中解答以上这类问题时经常碰到解答以上这类实际问题关键在于,根据实际情况加以判断和总结,巧妙取中点,巧妙分析和缩小故障的区间,从而以最短的时间和最小的精力达到目的,假设在区间-1,5上,f(x)的图象是一条连续的曲线,且f(-1
3、)0,f(5)0即f(-1)f(5)0,我们依如上方法求得方程f(x)=0的一个解?,取-1,5的一个中点2,因为f(2)0,f(5)0,即 f(2)f(5)0,所以在区间2,5内有方程的解,于是再取2,5的中点3.5,,如果取到某个区间的中点x0,恰好使f(x0)=0,则x0就是所求的一个解;如果区间中点的函数总不为0,那么,不断重复上述操作,,像上面这种求方程近似解的方法称为二分法,它是求一元方程近似解的常用方法。,二分法的定义:,定义如下: 对于在区间a,b上连续不断且f(a)f(b)0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进
4、而得到零点近似值的方法叫做二分法(bisection).,给定精度 ,用二分法求函数的零点近似值的步骤如下:,1.确定区间 ,验证 ,给定精度 ;,2.求区间 的中点 ;,3.计算,(1)若 ,则 就是函数的零点;,(2)若 ,则令 (此时零点 ;,(3)若 ,则令 (此时零点 ;,即若 ,则得到零点近似值 (或 );,4.判断是否达到精度 :,否则重复步骤24,例1. 求函数f(x)=lnx+2x-6在区间(2,3)内的零点(精确度为0.01).,解:画出y=lnx及y=6-2x的图象,观察图象得, 方程lnx=6-2x有唯一解,记为 ,且这个解 在区间(2,3)内。,(2,3),f(2)0
5、,2.5,f(2.5)0,(2.5,3),f(2.5)0,2.75,f(2.75)0,(2.5,2.75),f(2.5)0,2.625,f(2.625)0,(2.5,2.625),f(2.5)0,2.5625,f(2.5625)0,(2.53125,2.5625),f(2.5)0,(2.5,2.5625),f(2.53125)0,f(2.53125)0,2.5390625,2.546875,(2.53125,2.546875),2.53125,f(2.5390625)0,f(2.53125)0,(2.53125,.5390625),f(2.546875)0,f(2.53125)0,列出下表:,
6、由于,所以,可以将,作为函数,零点的近似值,也即方程,的近似根,点评:由函数的零点与相应方程根的关系,我们可以 用二分法来求方程的近似解。 由于计算量较大,而且是重复相同的步骤,因此可以通 过设计一定的计算程序,借助计算器或计算机完成计算。,利用计算器,求方程 lgx=3-x的近似解.(精确到0.1),解:画出y=lgx及y=3-x的图象,观察图象得,方程lgx=3-x有唯一解,记为x, 且这个解在区间(2,3)内。,设 f(x)=lgx+x-3,因为2.5625,2.625精确到0.1的近似值都为2.6,所以原方程的 近似解为x12.6 .,(2,3),f(2)0,2.5,f(2.5)0,(
7、2.5,3),f(2.5)0,2.75,f(2.75)0,(2.5,2.75),f(2.5)0,2.625,f(2.625)0,(2.5,2.625),f(2.5)0,2.5625,f(2.5625)0,(2.5625,2.625),f(2.5625)0,列出下表:,方法点评,用二分法求方程 f(x)=0(或g(x)=h(x))近似解的基本步骤:,1.寻找解所在区间,(1)图象法,先画出y = f(x)图象,观察图象与x轴的交点横坐标所处的范围;,或画出y=g(x)和y=h(x)的图象,观察两图象的交点横坐标的范围.,(2)函数法,把方程均转换为 f(x)=0的形式,再利用函数y=f(x) 的
8、有关性质(如单调性)来判断解所在的区间.,2.判断二分解所在的区间,若x1 (a,b),不妨设f(a)0,(3)若,(1)若,(2)若,由f(a)0 ,,则,由 ,,则,则f(b)0 ,对(1)、(2)两种情形再继续求二分解所在的区间.,当x1 (m,n),且m, n根据精确度得到的近似值均为同 一个值P时,则x1P ,即求得近似解。,3.根据精确度得出近似解,例2.借助计算器或计算机用二分法求方程2x+3x=7的近似解(精确度0.1),练习1:用二分法求函数,在区间(0,1)内的零点(精确到0.1),取区间(0,1)的中点,所以近似零点可取为0.6,再取区间(0.5,1)的中点,练习2: 下列函数的图象与x轴均有交点,其中不能用二分法求其零点的是( ),C,思考:根据练习2,请思考利用二分法求函数零点的条件是什么?,1.函数y=f(x)在a,b上连续不断.,2.y=f(x)满足f(a)f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 班级安全工作总结汇报
- 安全抽检系统培训
- Unit6-C-Story-time公开课教案【河南郑州】
- Unit3-A-Lets-learn教学课件【河南郑州】
- 2025年空气风淋室项目可行性研究报告
- 水循环利用技术在喷泉中的应用-全面剖析
- 游戏内容国际化评估-全面剖析
- 热电联供系统优化设计方法-全面剖析
- 扁桃体癌多学科综合治疗-全面剖析
- 智能化建筑节能管理-全面剖析
- 19S406建筑排水管道安装-塑料管道
- KA-T 20.1-2024 非煤矿山建设项目安全设施设计编写提纲 第1部分:金属非金属地下矿山建设项目安全设施设计编写提纲
- 绿色生活实践
- (2024年)硫化氢安全培训课件
- 《聚焦超声治疗》课件
- 2023-2024学年高一下学期第一次月考(湘教版2019)地理试题(解析版)
- 妇科炎症介绍演示培训课件
- 如康家园管理制度
- 蓄水池工程施工工艺与技术措施
- 2022年4月自考00149国际贸易理论与实务试题及答案含评分标准
- 大数据驱动的药物研发
评论
0/150
提交评论