Chapter4_Integrated_Optic_Waveguide.ppt_第1页
Chapter4_Integrated_Optic_Waveguide.ppt_第2页
Chapter4_Integrated_Optic_Waveguide.ppt_第3页
Chapter4_Integrated_Optic_Waveguide.ppt_第4页
Chapter4_Integrated_Optic_Waveguide.ppt_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Chapter 4Integrated Optic Waveguide,4.1 Dielectric Slab Waveguide,n3,n2,n1,d,Trapping of light ray in a waveguide,n2 n3,q,4.2 MODES IN THE SYMMETRIC-SLAB WAVEGUIDE,Range of for bound waves:,Propagation factor,Longitudinal propagation factor,Define the effective index of refraction:,4.2.1 Mode Condit

2、ion,The two boundaries (upper and lower) form a cavity. A cavity is resonant when the round trip phase shift is 2m (where m = 1,2,3 ). = m2 (4.10),4.2.2 TE and TM Polarization,TE polarization (Transverse Electric) This is the same as perpendicular polarization (s).,TM polarization (Transverse Magnet

3、ic) This is the same as parallel polarization (p).,(4.11),where we used the relationship,4.2.3 TE Mode Chart,Example,Consider an AlGaAs Laser Diode,For the TE0 mode the calculations yield the table:,(1),(2),(3),(4),(5),(6),q,n,eff,tan(hd/2),hd,2,p,n,1,cosq,d/l,80.4,3.550,0,0,3.757,0,82,3.565,0.651,1

4、.155,3.148,0.367,84,3.580,1.261,1.780,2.364,0.753,86,3.591,2.161,2.275,1.578,1.442,88,3.598,4.653,2.718,0.789,3.445,90,3.600,3.142,0,4.2.4 Higher Order Modes,(4.12),(4.13),q,n,eff,D(d/l),(d/l)2,80.4,3.550,0.836,0.836,1.672,82,3.565,0.998,1.365,2.363,84,3.580,1.329,2.082,3.410,86,3.591,1.991,3.433,5.

5、424,88,3.598,3.980,7.425,11.40,90,3.600,(d/l)0,0,0.367,0.753,1.442,3.445,(d/l)1,TE0,TE1,TE2,TE3,TE4,TE5,d/l,neff,q,Example: Let d = 1.64 m, = 0.82 m.,Find , neff, and the number of allowed modes. From the mode chart (next slide):,TE Mode Chart,d/l,neff,q,In general, the m-th mode cuts off (no longer

6、 propagates) when d/l satisfies:,(4.14),In a multimode waveguide: Lower-ordered rays travel with larger angles than higher-ordered rays.,TE0, TM0,TE1, TM1,d/l,q,neff,4.2.5 TM Mode Chart,Degenerate mode,Single mode propagation is obtained by satisfying (4.17),and polarizing the light as TE or TM.,cos

7、(hy),TE0,TE1,sin(hy),y,y,e-a(y-d/2),e-a(y-d/2),d/2,-d/2,4.2.6 Mode Pattern,cos(hy),TE2,TE3,sin(hy),y,y,d/2,-d/2,e-a(y-d/2),4.3 Modes In The Asymmetric Waveguide,d,n3,n2,n1,z,y,Example: Letn1 = 2.29 ZnS (zinc sulfide) n2 = 1.5 glass n3 = 1.0 air,TE0,TM0,d/l,neff,q,4.4 Coupling To The Waveguide,4.4.1E

8、dge Coupling,(4.21),Define the fractional refractive index change as:,Assume that n1 and n2 are nearly equal. Then,Finally,Cladding Modes Consider rays beyond the critical angle, ( c),These rays may be guided as cladding modes. (At the inner boundary there is partial reflection),4.4.2Prism Coupling,

9、gap,n1,n2,TE0 field in the film,p,np,n3 = air,Ep prism field,Prism,4.4.3Grating Coupling,4.5 Dispersion And Distortion In The Slab Waveguide,4.5.1Waveguide Dispersion,n1,n2,n1 n2,Axial mode,L2,n2,c,Higher order mode,L1,4.5.2Multimode Distortion ( Modal Distortion ),Axial mode travel time:,For the cr

10、itical angle ray,The total path of the critical angle ray is then,The total delay is,(4.27),The total pulse spread is given by,4.6 Integrated Optic Components,4.6.1 Passive Devices,Integrated Optic Directional Coupler,Substrate,L,P1,P2,P3,P4,For an ideal (lossless) coupler the relative output powers

11、 are given by: P2/P1 = cos2 (pL/2Lc) (4.30) P3/P1 = sin2 (pL/2Lc) (4.31) where Lc is called the coupling length. Any splitting ratio between the two output ports is possible by appropriate choice of length L.,Example: If the actual length L of the coupling region is Lc /2, compute the output couplin

12、g. P2/P1 = cos2 (p/4) = (0.707)2 = 0.5 P3/P1 = sin2 (p/4) = (0.707)2 = 0.5 50% of the power exits both of the output ports. Since 10 log P2/P1 = 10 log 0.5 = -3 dB this is a 3-dB coupler.,integrated optic power splitters,4.6.2 Active Devices Light Control Devices Beam Switches Modulations Light Conv

13、ersion Devices Light Sources (Transmitters) Photodetectors (Receivers),The electrooptic switch,As in the passive coupler, the power distribution is given by: P2/P1 = cos2 (pL/2Lc) P3/P1 = sin2 (pL/2Lc) L is the interaction length and Lc is the coupling length.,The interaction length L is set equal to the coupling length Lc,P2/P1 = cos2 ( /2) = 0 P3/P1 = sin2 ( /2) = 1,Mach-Zehnder Modulator,Optoelectronic int

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论