版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、133等腰三角形,133.2等边三角形(2课时),第1课时等边三角形的性质和判定,教学目标,1掌握等边三角形的定义 2理解等边三角形的性质与判定,重点难点,重点 等边三角形的性质和判定 难点 等边三角形的性质的应用,教学设计,一、问题引入 在等腰三角形中,如果底边与腰相等,会得到什么结论? 二、自主探究 1等边三角形的定义 底边和腰相等的等腰三角形叫做等边三角形 2思考:把等腰三角形的性质用于等边三角形,能得到什么结论?一个三角形的三个内角满足什么条件才是等边三角形? 边:三条边都相等 角:三个角都相等,并且每一个角都等于60.,教学设计,3在ABC中,ABC,你能得到ABBCCA吗?为什么?
2、 你从中能得到什么结论? 三个角都相等的三角形是等边三角形 4在ABC中,ABAC,A60.(1)求证:ABC是等边三角形; (2)如果把A60改为B60或C60,那么结论还成立吗? (3)由上你可以得到什么结论? 有一个角是60的等腰三角形是等边三角形,教学设计,三、应用举例 1教材例4. 例4如图,ABC是等边三角形,DEBC,分别交AB,AC于点D,E.求证:ADE是等边三角形,证明:ABC是等边三角形,ABC. DEBC,ADEB,AEDC, AADEAED, ADE是等边三角形,教学设计,2归纳:在判定三角形是等边三角形时: (1)若三角形是一般三角形,只要找三个角相等或三条边相等;
3、 (2)若三角形是等腰三角形,一般是找一个角等于60.,四、巩固练习 教材第80页练习第1,2题 补充题: 1如图,已知等边ABC,点D,E,F分别是各边上的一点,且ADBECF.求证:DEF是等边三角形 2如图,已知等边ABC,点D是AC的中点,且CECD,DFBE.求证:BFEF.,教学设计,第2题图,第1题图,教师提出要求,补充题1,2可以让学生板书过程 五、总结提高 小结:通过本节课的学习,你了解到了等边三角形有哪些特点? 怎样判定一个三角形是等边三角形? 布置作业:教材习题13.3第12,14题,教学设计,教学中设计了两个问题:把等腰三角形的性质用于等边三角形,你能得到什么结论?类似地,你又能得到哪些等边三角形的判定方法?让学生先自主探索再合作交流,小组内、小组间充分讨论后概括所得结论这既巩固应用等腰三角形的知识,又类比探索
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 委托进口产品代理合同模板
- 保洁工工作合同范例
- 建房合同范例贷款
- 学生团队租车合同范例
- 博物馆内外:一体化探索
- 危房申请合同范例
- 传媒硬件采购合同模板
- 快递企业服务合同范例
- 艺术灵感生活蕴藏
- 开业花篮租赁合同范例
- 脚内侧传球说课PPT
- 道德与法治五年级下册-5 建立良好的公共秩序(课件)
- 2023年湖南化工职业技术学院单招职业适应性测试题库及答案解析
- 检查工作纪律及注意事项
- GB/T 8982-2009医用及航空呼吸用氧
- GB/T 14079-1993软件维护指南
- GB/T 10781.2-2006清香型白酒
- 朝三暮四的故事
- FZ/T 01137-2016纺织品荧光增白剂的测定
- 9-马工程《艺术学概论》课件-第九章(20190403)【已改格式】.课件电子教案
- 新奥集团业务领先模型(BLM)应用实践PP课件
评论
0/150
提交评论