




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、28.2 解直角三角形(4),-坡度坡角,偃师市实验中学 刘丽红,探索新知,坡度通常写成1m的形式,如i=16.,坡面与水平面的夹角叫做坡角,记作a,有i =tan a 显然,坡度越大,坡角a就越大,坡面就越陡.,在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.,如图19.4.5,坡面的铅垂高度(h)和水平长度(l) 的比叫做坡面坡度(或坡比).记作i,即i= .,A,C,B,i=12,D,基础训练,解直角三角形有广泛的应用,解决问题时,要根据实际情况灵活运用相关知识,例如,当我们要测量如图所示大坝的高度h时,只要测出仰角a和大坝的坡面长度l,就能算出h=lsina,但是,当我们
2、要测量如图所示的山高h时,问题就不那么简单了,这是由于不能很方便地得到仰角a和山坡长度l,化整为零,积零为整,化曲为直,以直代曲的解决问题的策略,与测坝高相比,测山高的困难在于;坝坡是“直”的,而山坡是“曲”的,怎样解决这样的问题呢?,我们设法“化曲为直,以直代曲” 我们可以把山坡“化整为零”地划分为一些小段,图表示其中一部分小段,划分小段时,注意使每一小段上的山坡近似是“直”的,可以量出这段坡长l1,测出相应的仰角a1,这样就可以算出这段山坡的高度h1=l1sina1.,在每小段上,我们都构造出直角三角形,利用上面的方法分别算出各段山坡的高度h1,h2,hn,然后我们再“积零为整”,把h1,
3、h2,hn相加,于是得到山高h.,以上解决问题中所用的“化整为零,积零为整”“化曲为直,以直代曲”的做法,就是高等数学中微积分的基本思想,它在数学中有重要地位,在今后的学习中,你会更多地了解这方面的内容,利用解直角三角形的知识解决实际问题的一般过程是: (1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题); (2)根据条件的特点,适当选用锐角三角形函数等去解直角三角形; (3)得到数学问题的答案; (4)得到实际问题的答案,例1. 如图,拦水坝的横断面为梯形ABCD(图中i=1:3是指坡面的铅直高度DE与水平宽度CE的比),根据图中数据求: (1)坡角a和; (2)坝顶宽A
4、D和斜坡AB的长(精确到0.1m),B,A,D,F,E,C,6m,i=1:3,i=1:1.5,练习1 :如图,水库的横截面是梯形,坝高23m,斜坡AB的坡高度 ,斜坡CD的坡度i=1:1,求斜坡AB的长及坡角a和坝底宽AD(精确到0.1m),E,F,经典例题赏析2,2、如图, 一段路基的横断面是梯形,高为4.2米,上底的宽是12.51米,路基的坡面与地面的倾角分别是32和28求路基下底的宽(精确到0.1米),例2.如图是某公路路基的设计简图,等腰梯形ABCD表示它的横断面,原计划设计的坡角为A=2237,坡长AD=6. 5米,现考虑到在短期内车流量会增加,需增加路面宽度,故改变设计方案,将图中1,2两部分分别补到3,4的位置,使横断面EFGH为等腰梯形,重新设计后路基的坡角为32,全部工程的用土量不变,问:路面宽将增加多少? (选用数据:sin2237 ,cos2237 , tan 2237 , tan 32 ),M,N,1如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60o,沿山坡向上走到P处再测得点C的仰角为45o,已知OA=10
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《数据统计分析与spss应用》2023-2024学年第二学期期末试卷
- 商丘学院《司法社会调查理论与方法》2023-2024学年第二学期期末试卷
- 湖南第一师范学院《世界近代史专题》2023-2024学年第二学期期末试卷
- 浙江育英职业技术学院《特殊儿童心理学》2023-2024学年第二学期期末试卷
- 做账实操-驾校教练人工成本的核算
- 2024-2025学年河南省名校大联考高二上学期阶段性测试(二)历史试卷
- 大连工业大学《产品色彩设计》2023-2024学年第二学期期末试卷
- 电子科技大学中山学院《建筑装饰材料》2023-2024学年第二学期期末试卷
- 洛阳理工学院《工商管理类专业导论》2023-2024学年第二学期期末试卷
- 渭南职业技术学院《医学网站开发》2023-2024学年第二学期期末试卷
- 第二十一章会阴部美容手术讲解
- 2024年金华金开招商招才服务集团有限公司招聘笔试真题
- 【道法】历久弥新的思想理念课件 2024-2025学年统编版道德与法治七年级下册
- 2025年度iPhone手机租赁与虚拟现实体验合同3篇
- 2025年度消防工程安全防护措施设计固定总价合同范本3篇
- 苏北四市(徐州、宿迁、淮安、连云港)2025届高三第一次调研考试(一模)语文试卷(含答案)
- 食品企业危机管理应对方案
- 2024年济南广播电视台招聘工作人员笔试真题
- 2025年临床医师定期考核必考复习题库及答案(1060题)
- 市场消防安全课件
- 名师工作室建设课件
评论
0/150
提交评论