




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、实验四:动物养殖问题,莱斯利矩阵模型 实验任务与操作 思考题与练习题 直线族及其包络绘图, ,莱斯利于1945年提出用于预测单种群生物数量增长的矩阵模型。,将一个生物种群按年龄分为 m 个年龄组。设 xk( t ) 表示 t 时刻第 k 个年龄组的生物数量, xk(0)是初始时刻数量。生物数量向量,随时间 t = 0, t1, t2, t3, 变化规律用矩阵,描述。即,P.H.Leslie 1900-1974,某种动物最大年龄为15岁,将其分为三个年龄组:第一组05岁;第二组610岁;第三组1115岁。第二组在其年龄段平均繁殖4个后代,第三组平均繁殖3个后代。第一和第二组五年的存活率分别为0.
2、5和0.25。现有三个年龄组动物各1000,计算5年后、10年后、15年后各年龄组动物数量。,X(k+1)=L X(k),设 t0 = 0, t1 = 5, t2 = 10, t3 = 15. 各年龄组动物数量 x1(k)=x1(tk), x2(k)= x2(tk), x3(k)= x3(tk),x1(0),x2(0),x3(0),x3(1)=0.25x2(0),x1(1)=4x2(0)+3x3(0),实验任务: 以五年为一时间段,分析动物各年龄组数量变化规律. 动物数量变化趋势是无限增长还是趋于灭亡? 3*.如果每五年向其它养殖场输送动物 C=s1 s2 s3T 要求20年后本养殖场动物不灭
3、绝,C 取多少为好?,现有三个组的动物各1000,计算第5年、第10年、第15年后各个周龄的动物数量,开始时刻 X(0) = 1000, 1000, 1000T,实验任务一:动物数量变化规律计算,function X=animal(n) L=0 4 3;0.5 0 0;0 0.25 0; X=1000;1000;1000; P=X; for k=1:n X=L*X;P=P,X; end figure(1),bar(P(1,:) figure(2),bar(P(2,:) figure(3),bar(P(3,:),调用函数 X=animal(12) X =314754.15 143543.21 1
4、6547.12,L=0 4 3;0.5 0 0;0 0.25 0; P,lamda=eig(L),L 的主特征值,主特征值特征向量试验与注记,p1=P(:,1);d=sum(p1); p=p1/d X0=p*3000,P= 0.95 0.93 0.23 0.32 -0.36 -0.59 0.05 0.07 0.77,Lamda= 1.50 0 0 0 -1.31 0 0 0 -0.19,X0= 2160.00 720.00 120.00,动物数量按年龄显示出倒金字塔结构,2160 720 120,主特征值:,三个线性无关特征向量:,取,初始时刻:,通项:,取 n=3 2160. 3240. 4
5、860. 7290 720. 1080. 1620. 2430. 120. 180. 270. 405.,function P=animal(n) L=0 4 3;0.5 0 0;0 0.25 0; X=1000;1000;1000; P=X; for k=1:n X=L*X;P=P,X; end figure(1),bar(P(1,:) figure(2),bar(P(2,:) figure(3),bar(P(3,:),实验任务三:每五年平均向市场供应动物 C = s1 s2 s3T 修正数学模型,X(k+1) = L X(k) C , (k = 0, 1,2,3),X(1) = L X(0
6、) C, X(2) = L X(1) C X(3) = L X(2) C, X(4) = L X(3) C,X(2) = L2 X(0) LC C X(3) = L3 X(0) L2C LC C X(4) = L4 X(0) L3C L2C LC C,X(4) = L4 X(0) (L3 + L2 + L + I ) C,思考与练习,1.何为矩阵的主特征值?在动物养殖问题中,莱斯利矩阵的主特征值如何影响动物数量变化? 2.莱斯利矩阵反映的是一种精确变化的规律,这一数学模型有何缺点? 3.动物养殖过程中各年龄组的数量是整数,而数学模型所反映的是实数,应该怎样调整? 如何描述动物不灭绝?,所有切线构成直线族,原来曲线成为直线族的包络。,直线簇及其包络实验,当第一象限曲线为单减凹曲线时,曲线的切线位于曲线下方。,设有星形曲线,参数方程,(x,y)处点斜式方程,曲线的切线斜率,将参数方程代入,得,X轴上点: (cos t , 0 ),Y轴上点: ( 0 , sin t ),function starlin(N) if nargin=0,N=20;end t=linspace(0,pi/2,N); %确定参数值 x=cos(t).3; %计算曲线坐标 y=sin(t).3; O=zeros(1,N); X=cos(t);O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 修井队施工方案
- 数据隐私保护的同态加密优化技术研究-全面剖析
- 旅游大数据分析应用-全面剖析
- 智能制造产业链协同-全面剖析
- 智能化问题分类-全面剖析
- 跨界联名广告策划行业跨境出海战略研究报告
- 财务分析服务行业跨境出海战略研究报告
- 综合后勤管理年终述职
- 中国电动独轮车行业市场深度分析及投资战略规划报告
- 2025年中国桂圆干行业发展潜力分析及投资方向研究报告
- GB 16246-1996车间空气中硫酸二甲酯卫生标准
- 驱动桥毕业设计
- 2023机关公文写作与处理PPT模板
- 基坑支护、降水及土方开挖专项施工方案
- 幼儿数字1-100字帖练习
- 细胞生物学-7细胞信号转导课件
- 搅拌站安全培训试卷
- 茶叶市场营销讲义
- 走进中国传统节日 详细版课件
- 乙肝两对半ppt课件
- 锅炉空气预热器拆除安装方案
评论
0/150
提交评论