椭圆的简单几何性质2_第1页
椭圆的简单几何性质2_第2页
椭圆的简单几何性质2_第3页
椭圆的简单几何性质2_第4页
椭圆的简单几何性质2_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2.2.2椭圆的简单几何性质(2),|x| a,|y| b,关于x轴、y轴成轴对称;关于原点成中心对称,(a,0)、(-a,0)、(0,b)、(0,-b),(c,0)、(-c,0),长半轴长为a,短半轴长为b. ab,a2=b2+c2,|x| b,|y| a,同前,(b,0)、(-b,0)、(0,a)、(0,-a),(0 , c)、(0, -c),同前,同前,同前,复习练习: 1.椭圆的长短轴之和为18,焦距为6,则椭圆的标准方程为( ),2、下列方程所表示的曲线中,关于x轴和y 轴 都对称的是( ) A、X2=4Y B、X2+2XY+Y=0 C、X2-4Y2=X D、9X2+Y2=4,C,D

2、,练习,1、若椭圆的焦距长等于它的短轴长,则其离心率为 。 2、若椭圆的两个焦点及一个短轴端点构成正三角形,则其离心率为 。 3、若椭圆的 的两个焦点把长轴分成三等分,则其离心率为 。,4、若某个椭圆的长轴、短轴、焦距依次成等差数列, 则其离心率e=_,(a,0),a,(0, b),b,(-a,0),a+c,(a,0),a-c,6、,5、以椭圆的焦距为直径并过两焦点的圆,交椭圆于四个不同的点,顺次连接这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率 。,例1 如图,我国发射的第一颗人造地球卫星的运行轨道,是以地心(地球的中心)F2为一个焦点的椭圆,已知它的近地点A(离地面最近的点)

3、距地面439km,远地点B距地面2384km.并且F2、A、B在同一直线上,地球半径约为6371km,求卫星运行的轨道方程(精确到1km).,X,O,F1,F2,A,B,X,X,Y,解:以直线AB为x轴,线段AB的中垂线为y轴建立如图所示的直角坐标系,AB与地球交与C,D两点。,由题意知:,|AC|=439,|BD|=2384,D,C,b7722.,2、2005年10月17日,神州六号载人飞船带着亿万中华儿女千万年的梦想与希望,遨游太空返回地面。其运行的轨道是以地球中心为一焦点的椭圆,设其近地点距地面m(km),远地点距地面n(km),地球半径R(km),则载人飞船运行轨道的短轴长为( ),A

4、. mn(km) B. 2mn(km),D,H,d,思考上面探究问题,并回答下列问题:,探究:,(1)用坐标法如何求出其轨迹方程,并说出轨迹,(2)给椭圆下一个新的定义,归纳:,椭圆的第一定义与第二定义是相呼应的。,练 习,(ab0)左焦点为F1,右焦点为F2,P0(x0,y0)为椭圆上一点,则|PF1|=a+ex0,|PF2|=a-ex0。其中|PF1|、 |PF2|叫焦半径.,(ab0)下焦点为F1,上焦点为F2,P0(x0,y0)为椭圆上一点,则|PF1|=a+ey0,|PF2|=a-ey0。其中|PF1|、 |PF2|叫焦半径.,说明:,练习:已知椭圆 P为椭圆在第一象限内的点,它 与两焦点的连线互相垂直,求P点的坐标。,法二,定义:,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论