下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3.3-1两直线的交点坐标三维目标知识与技能:1。直线和直线的交点 2二元一次方程组的解过程和方法:1。学习两直线交点坐标的求法,以及判断两直线位置的方法。 2掌握数形结合的学习法。 3组成学习小组,分别对直线和直线的位置进行判断,归纳过定点的 直线系方程。情态和价值:1。通过两直线交点和二元一次方程组的联系,从而认识事物之间的内 的联系。 2能够用辩证的观点看问题。教学重点,难点重点:判断两直线是否相交,求交点坐标。难点:两直线相交与二元一次方程的关系。教学方法:启发引导式 在学生认识直线方程的基础上,启发学生理解两直线交点与二元一次方程组的的相互关系。引导学生将两直线交点的求解问题转化为相
2、应的直线方程构成的二元一次方程组解的问题。由此体会“形”的问题由“数”的运算来解决。教具:用POWERPOINT课件的辅助式教学教学过程:情境设置,导入新课用大屏幕打出直角坐标系中两直线,移动直线,让学生观察这两直线的位置关系。课堂设问一:由直线方程的概念,我们知道直线上的一点与二元一次方程的解的关系,那如果两直线相交于一点,这一点与这两条直线的方程有何关系?讲授新课分析任务,分组讨论,判断两直线的位置关系已知两直线L1:A1x+B1y +C1=0,L2:A2x+B2y+C2=0如何判断这两条直线的关系? 教师引导学生先从点与直线的位置关系入手,看表一,并填空。 几何元素及关系 代数表示点A
3、A(a,b)直线LL:Ax+By+C=0点A在直线上直线L1与 L2的交点A课堂设问二:如果两条直线相交,怎样求交点坐标?交点坐标与二元一次方程组有什关系?学生进行分组讨论,教师引导学生归纳出两直线是否相交与其方程所组成的方程组有何关系?若二元一次方程组有唯一解,L 1与L2 相交。若二元一次方程组无解,则L 1与 L2平行。若二元一次方程组有无数解,则L 1 与L2重合。课后探究:两直线是否相交与其方程组成的方程组的系数有何关系?例题讲解,规范表示,解决问题例题1:求下列两直线交点坐标L1 :3x+4y-2=0L1:2x+y +2=0 解:解方程组 得 x=-2,y=2所以L1与L2的交点坐
4、标为M(-2,2),如图3。3。1。教师可以让学生自己动手解方程组,看解题是否规范,条理是否清楚,表达是否简洁,然后才进行讲解。同类练习:书本110页第1,2题。例2 判断下列各对直线的位置关系。如果相交,求出交点坐标。L1:x-y=0,L2:3x+3y-10=0L1:3x-y=0,L2:6x-2y=0L1:3x+4y-5=0,L2:6x+8y-10=0 这道题可以作为练习以巩固判断两直线位置关系。启发拓展,灵活应用。课堂设问一。当变化时,方程 3x+4y-2+(2x+y+2)=0表示何图形,图形有何特点?求出图形的交点坐标。可以一用信息技术,当 取不同值时,通过各种图形,经过观察,让学生从直
5、观上得出结论,同时发现这些直线的共同特点是经过同一点。找出或猜想这个点的坐标,代入方程,得出结论。结论,方程表示经过这两条直线L1 与L2的交点的直线的集合。 例2 已知为实数,两直线:,:相交于一点,求证交点不可能在第一象限及轴上.分析:先通过联立方程组将交点坐标解出,再判断交点横纵坐标的范围.解:解方程组若0,则1.当1时,0,此时交点在第二象限内.又因为为任意实数时,都有10,故0因为1(否则两直线平行,无交点) ,所以,交点不可能在轴上,得交点()小结:直线与直线的位置关系,求两直线的交点坐标,能将几何问题转化为代数问题来解决,并能进行应用。练习及作业:光线从M(-2,3)射到x轴上的一点P(1,0)后被x轴反
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽车用灭火设备市场需求与消费特点分析
- 睡袋市场发展现状调查及供需格局分析预测报告
- 2024年度大连地区雷电防护工程设计与施工合同
- 2024年度建筑施工合同工程质量与安全标准
- 局部感应空调市场发展现状调查及供需格局分析预测报告
- 电咖啡研磨机市场发展预测和趋势分析
- 2024年度员工福利计划合同
- 2024年度环境评估外包合同
- 2024年度地毯行业产业链整合与合作合同
- 2024年度大型活动安防保障服务合同
- 我国灾难医学发展与现状
- DB-T 29-22-2024 天津市住宅设计标准
- JJF(建材)157-2019 智能坐便器防水击性能和防虹吸功能测试装置校准规范报批稿
- 附件2:工程实体质量常见问题治理自评总结报告-施工
- 《人工智能基础》题集
- 2024年山东省济宁市中考数学试题(解析版)
- 2024新《公司法》亮点全面解读课件
- 聚焦高质量+探索新高度+-2025届高考政治复习备考策略
- 人教版二年级上册体育跳跃与游戏(作业设计)
- 渐开线齿廓及啮合特性讲解
- 开票税点自动计算器
评论
0/150
提交评论