zmj-1429-99904.ppt_第1页
zmj-1429-99904.ppt_第2页
zmj-1429-99904.ppt_第3页
zmj-1429-99904.ppt_第4页
zmj-1429-99904.ppt_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、北师大版 九年级(下),2 二次函数的图象与性质(2),函数y=ax2(a0)的图象和性质,在同一坐标系中作二次函数y=x2和y=2x2的图象,(1)完成下表:,(2)分别作出y=x2和y=2x2的图象,二次项系数a0,开口都向上;对 称轴都是y轴;增减性与也相同.,顶点都是 原点(0,0).,二次函数y=2x2的 图象形状与y=x2 一样,仍是抛物线.,(3)二次函数y=2x2的图象是什么形状?它与二次函数y=x2的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么?,只是开口 大小不同.,想一想,在同一坐标系中作二次函数y=-x2和y=-2x2的图象,会是什么样?,二次项系数a

2、0,开口都向下;对 称轴都是y轴;增减性与也相同.,顶点都是 原点(0,0).,二次函数y=-2x2的 图象形状与y=-x2 一样,仍是抛物线.,(4)二次函数y=-2x2的图象是什么形状?它与二次函数y=-x2的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么?,只是开口 大小不同.,请你总结二次函数y=ax2的图象和性质.,1.抛物线y=ax2的顶点是原点,对称轴是y轴.,3.当a0时,在对称轴的左侧,y随着x的增大而减小;在对称轴右侧,y随着x的增大而增大.当x=0时函数y的值最小.当a0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x增大而减小,当x=0

3、时,函数y的值最大.,二次函数y=ax2的性质,2.当a0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;当a0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.,4. 越大,开口越小, 越小,开口越大.,二次函数y=ax2的性质,.顶点坐标与对称轴,.位置与开口方向,.增减性与最值,抛物线,顶点坐标,对称轴,位置,开口方向,增减性,最值,y=ax2 (a0),y= ax2 (a0),(0,0),(0,0),y轴,y轴,在x轴的上方(除顶点外),在x轴的下方( 除顶点外),向上,向下,当x=0时,最小值为0.,当x=0时,最大值为0.,

4、在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.,在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.,根据图形填表:,我思,我进步,在同一坐标系中作出二次函数y=2x+1的图象与二次函数y=2x的图象.,二次函数y=2x+1的图象与二次函数y=2x的图象有什么关系?它们是轴对称图形吗?它的开口方向、对称轴和顶点坐标分别是什么?作图看一看,二次项系数为2,开口向上; 开口大小相同;对称轴都是 y轴;增减性与也相同.,顶点不同,分别是 原点(0,0)和(0,1).,二次函数y=2x2+1的 图象形状与y=2x2 一样,仍是抛物线.,二次

5、函数y=2x2+1的图象是什么形状?它与二次函数y=2x2的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么?,位置不同; 最小值不同: 分别是1和0.,想一想,在同一坐标系中作二次函数y=-2x2+1和y=-2x2的图象,会是什么样?,二次项系数为-2,开口向下; 开口大小相同;对称轴都是 y轴;增减性与也相同.,顶点不同,分别是 原点(0,0)和(0,1).,二次函数y=-2x2+1的 图象形状与y=-2x2 一样,仍是抛物线.,二次函数y=-2x2+1的图象是什么形状?它与二次函数y=-2x2的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么?,位置不同; 最

6、大值不同: 分别是1和0.,想一想,二次函数y=ax2+c和y=ax2的图象和性质?,我思,我进步,在同一坐标系中作出二次函数y=3x-1的图象与二次函数y=3x的图象.,二次函数y=3x一l的图象与二次函数y=3x的图象有什么关系?它们是轴对称图形吗?它的开口方向、对称轴和顶点坐标分别是什么?,二次项系数为正数3,开口 向上;开口大小相同;对称 轴都是y轴;增减性与也相同.,顶点不同,分别是 原点(0,0)和(0,-1).,二次函数y=3x2+1的 图象形状与y=3x2 一样,仍是抛物线.,二次函数y=3x2-1的图象是什么形状?它与二次函数y=3x2的图象有什么相同和不同?它的开口方向、对

7、称轴和顶点坐标分别是什么?,位置不同; 最大值不同: 分别是1和0.,想一想,在同一坐标系中作二次函数y=-3x2-1和y=-3x2的图象,会是什么样?,二次项系数为正数-3,开口 向下;开口大小相同;对称 轴都是y轴;增减性与也相同.,顶点不同,分别是 原点(0,0)和(0,-1).,二次函数y=3x2+1的 图象形状与y=3x2 一样,仍是抛物线.,二次函数y=-3x2-1的图象是什么形状?它与二次函数y=-3x2的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么?,位置不同; 最大值不同: 分别是0和-1.,请你总结二次函数y=ax2+c的图象和性质.,二次函数y=ax2+

8、c的图象和性质,.顶点坐标与对称轴,.位置与开口方向,.增减性与最值,抛物线,顶点坐标,对称轴,位置,开口方向,增减性,最值,y=ax2 +c(a0),y=ax2 +c(a0),(0,c),(0,c),y轴,y轴,当c0时,在x轴的上方(经过一,二象限); 当c0时,与x轴相交(经过一,二三四象限).,当c0时,与x轴相交(经过一,二三四象限).,向上,向下,当x=0时,最小值为c.,当x=0时,最大值为c.,在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.,在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.,根据图形填表:,二次函

9、数y=ax+c与=ax的关系,1.相同点: (1)图像都是抛物线, 形状相同, 开口方向相同. (2)都是轴对称图形, 对称轴都是y轴. (3)都有最(大或小)值. (4)a0时, 开口向上,在y轴左侧,y都随x的增大而减小,在y轴右侧,y都随 x的增大而增大. a0时,开口向下,在y轴左侧,y都随x的增大而增大,在y轴右侧,y都随 x的增大而减小 .,2.不同点:(1)顶点不同:分别是(0,c),(0,0). (2)最值不同:分别是c和0. 3.联系: y=ax+c(a0) 的图象可以看成y=ax的图象沿y轴整体平移|c|个单位得到的.(当c0时向上平移;当c0时,向下平移).,习题,1二次函数y=-3x2和y=3x2的图象有什

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论