2017-2018版高中数学第二章空间向量与立体几何4用向量讨论垂直与平行二学案北师大版选修2_第1页
2017-2018版高中数学第二章空间向量与立体几何4用向量讨论垂直与平行二学案北师大版选修2_第2页
2017-2018版高中数学第二章空间向量与立体几何4用向量讨论垂直与平行二学案北师大版选修2_第3页
2017-2018版高中数学第二章空间向量与立体几何4用向量讨论垂直与平行二学案北师大版选修2_第4页
2017-2018版高中数学第二章空间向量与立体几何4用向量讨论垂直与平行二学案北师大版选修2_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、4 用向量讨论垂直与平行(二)学习目标1.能用向量法判断一些简单线线、线面、面面垂直关系.2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直关系.3.能用向量方法证明空间线面垂直关系的有关定理.知识点一向量法判断线线垂直思考若直线l1的方向向量为1(1,3,2),直线l2的方向向量为2(1,1,1),那么两直线是否垂直?用向量法判断两条直线垂直的一般方法是什么?梳理设直线l的方向向量为a(a1,a2,a3),直线m的方向向量为b(b1,b2,b3),则lm_.知识点二向量法判断线面垂直思考若直线l的方向向量为1,平面的法向量为2,则直线l与平面的位置关系是怎样的?如何用向量法判断直线

2、与平面的位置关系?梳理设直线l的方向向量为a(a1,b1,c1),平面的法向量为(a2,b2,c2),则la_.知识点三向量法判断面面垂直思考平面,的法向量分别为1(x1,y1,z1),2(x2,y2,z2),用向量坐标法表示两平面,垂直的关系式是什么?梳理若平面的法向量为(a1,b1,c1),平面的法向量为(a2,b2,c2),则0_.类型一证明线线垂直例1已知正三棱柱ABCA1B1C1的各棱长都为1,M是底面BC边的中点,N是侧棱CC1上的点,且CNCC1.求证:AB1MN. 反思与感悟证明两直线垂直的基本步骤:建立空间直角坐标系写出点的坐标求直线的方向向量证明向量垂直得到两直线垂直.跟踪

3、训练1如图,在直三棱柱ABCA1B1C1中,AC3,BC4,AB5,AA14,求证:ACBC1. 类型二证明线面垂直例2如图所示,正三棱柱ABCA1B1C1的所有棱长都为2,D为CC1的中点. 求证:AB1平面A1BD.反思与感悟用坐标法证明线面垂直的方法及步骤方法一:(1)建立空间直角坐标系.(2)将直线的方向向量用坐标表示.(3)找出平面内两条相交直线,并用坐标表示它们的方向向量.(4)分别计算两组向量的数量积,得到数量积为0.方法二:(1)建立空间直角坐标系.(2)将直线的方向向量用坐标表示.(3)求出平面的法向量.(4)判断直线的方向向量与平面的法向量平行.跟踪训练2如图,在长方体AB

4、CDA1B1C1D1中,ABAD1,AA12,点P为DD1的中点.求证:直线PB1平面PAC. 类型三证明面面垂直例3在三棱柱ABCA1B1C1中,AA1平面ABC,ABBC,ABBC2,AA11,E为BB1的中点,求证:平面AEC1平面AA1C1C.反思与感悟证明面面垂直的两种方法(1)常规法:利用面面垂直的判定定理转化为线面垂直、线线垂直去证明.(2)向量法:证明两个平面的法向量互相垂直.跟踪训练3在四面体ABCD中,AB平面BCD,BCCD,BCD90,ADB30,E、F分别是AC、AD的中点,求证:平面BEF平面ABC.1.下列命题中,真命题的个数为()若n1,n2分别是平面,的法向量

5、,则n1n2;若n1,n2分别是平面,的法向量,则 n1n20;若n是平面的法向量,a与平面平行,则na0;若两个平面的法向量不垂直,则这两个平面不垂直.A.1 B.2 C.3 D.42.已知两直线的方向向量为a,b,则下列选项中能使两直线垂直的为()A.a(1,0,0),b(3,0,0)B.a(0,1,0),b(1,0,1)C.a(0,1,1),b(0,1,1)D.a(1,0,0),b(1,0,0)3.若直线l的方向向量为a(1,0,2),平面的法向量为(2,0,4),则()A.l B.lC.l D.l与斜交4.平面的一个法向量为m(1,2,0),平面的一个法向量为n(2,1,0),则平面与

6、平面的位置关系是()A.平行 B.相交但不垂直 C.垂直 D.不能确定5.已知平面内的三点A(0,0,1),B(0,1,0),C(1,0,0),平面的一个法向量为n(1,1,1),则不重合的两个平面与的位置关系是_.空间垂直关系的解决策略几何法向量法线线垂直(1)证明两直线所成的角为90.(2)若直线与平面垂直,则此直线与平面内所有直线垂直两直线的方向向量互相垂直线面垂直对于直线l,m,n和平面(1)若lm,ln,m,n,m与n相交,则l.(2)若lm,m,则l(1)证明直线的方向向量分别与平面内两条相交直线的方向向量垂直.(2)证明直线的方向向量与平面的法向量是平行向量面面垂直对于直线l,m

7、和平面,(1)若l,l,则.(2)若l,m,lm,则.(3)若平面与相交所成的角为直角,则证明两个平面的法向量互相垂直提醒:完成作业第二章4(二)答案精析问题导学知识点一思考l1与l2垂直,因为121320,所以12.又1,2是两直线的方向向量,所以l1与l2垂直.判断两条直线是否垂直的方法:(1)在两直线上分别取两点A、B与C、D,计算向量与的坐标,若0,则两直线垂直,否则不垂直.(2)判断两直线的方向向量的数量积是否为零,若数量积为零,则两直线垂直,否则不垂直.梳理ab0a1b1a2b2a3b30知识点二思考垂直,因为12,所以12,即直线的方向向量与平面的法向量平行,所以直线l与平面垂直

8、.判断直线与平面的位置关系的方法:(1)直线l的方向向量与平面的法向量共线l. (2)直线的方向向量与平面的法向量垂直直线与平面平行或直线在平面内.(3)直线l的方向向量与平面内的两相交直线的方向向量垂直l.梳理ak(kR)知识点三思考x1x2y1y2z1z20.梳理a1a2b1b2c1c20题型探究例1证明设AB中点为O,作OO1AA1.以O为坐标原点,OB为x轴,OC为y轴,OO1为z轴建立如图所示的空间直角坐标系.由已知得A,B,C,N,B1.M为BC中点,M.,(1,0,1),00,AB1MN.跟踪训练1证明直三棱柱ABCA1B1C1底面三边长AC3,BC4,AB5,AC、BC、C1C

9、两两垂直.如图,以C为坐标原点,CA、CB、CC1所在直线分别为x轴、y轴、z轴建立空间直角坐标系.则C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),(3,0,0),(0,4,4),0,ACBC1.例2证明如图所示,取BC的中点O,连接AO. 因为ABC为正三角形,所以AOBC.因为在正三棱柱ABCA1B1C1中,平面ABC平面BCC1B1,所以AO平面BCC1B1.取B1C1的中点O1,以O为原点,以,分别为x轴,y轴,z轴的正方向建立空间直角坐标系,则B(1,0,0),D(1,1,0),A1(0,2,),A(0,0,),B1(1,2,0).所以(1,2,),(1,

10、2,),(2,1,0).因为1(1)22()0,1(2)21()00,所以,即AB1BA1,AB1BD.又因为BA1BDB,所以AB1平面A1BD.跟踪训练2证明如图建立空间直角坐标系,C(1,0,0),A(0,1,0),P(0,0,1),B1(1,1,2),(1,0,1),(0,1,1),(1,1,1).(1,1,1)(1,0,1)0,所以,即PB1PC.又(1,1,1)(0,1,1)0,所以,即PB1PA.又PAPCP,所以PB1平面PAC.例3证明由题意知直线AB,BC,B1B两两垂直,以点B为原点,分别以BA,BC,BB1所在直线为x,y,z轴,建立如图所示的空间直角坐标系,则A(2,0,0),A1(2,0,1),C(0,2,0),C1(0,2,1),E(0,0,),故(0,0,1),(2,2,0),(2,2,1),(2,0,).设平面AA1C1C的法向量为n1(x,y,z),则即令x1,得y1,故n1(1,1,0).设平面AEC1的法向量为n2(a,b,c),则即令c4,得a1,b1,故n2(1,1,4).因为n1n2111(1)040,所以n1n2.所以平面AEC1平面AA1C1C.跟踪训练3证明以B为原点建立如图所示的空间直角坐标系,设A(0,0,a),则易得B(0,0,0),C,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论