版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、23.3向量数量积的坐标运算与度量公式预习课本P112114,思考并完成以下问题 (1)平面向量数量积的坐标表示是什么?(2)如何用坐标表示向量的模、夹角、垂直?1向量数量积及向量垂直的坐标表示设a(a1,a2),b(b1,b2)(1)数量积aba1b1a2b2.(2)若a,b为非零向量,ab a1b1a2b20.点睛记忆口诀:数量积的坐标表示可简记为“对应相乘计算和”2三个重要公式(1)向量的长度公式:已知a(a1,a2),则|a|.(2)两点间的距离公式:A(x1,y1),B(x2,y2),则|.(3)向量的夹角公式:a(a1,a2),b(b1,b2),则cosa,b.1判断下列命题是否正
2、确(正确的打“”,错误的打“”)(1)向量的模等于向量坐标的平方和()(2)若a(a1,a2),b(b1,b2),则aba1b1a2b20.()(3)若两个非零向量的夹角满足cos 0,则两向量的夹角一定是钝角()答案:(1)(2)(3)2已知a(3,4),b(5,2),则ab的值是()A23B7C23D7答案:D3已知向量a(x5,3),b(2,x),且ab,则由x的值构成的集合是()A2,3B1,6 C2D6答案:C4已知a(1,),b(2,0),则|ab|_.答案:2平面向量数量积的坐标运算典例(1)(全国卷)向量a(1,1),b(1,2),则(2ab)a()A1B0C1 D2(2)(广
3、东高考)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,(1,2),(2,1),则()A5 B4C3D2解析(1)a(1,1),b(1,2),(2ab)a(1,0)(1,1)1.(2)由(1,2)(2,1)(3,1),得(2,1)(3,1)5.答案(1)C(2)A数量积坐标运算的两条途径进行向量的数量积运算,前提是牢记有关的运算法则和运算性质解题时通常有两条途径:一是先将各向量用坐标表示,直接进行数量积运算;二是先利用数量积的运算律将原式展开,再依据已知计算活学活用已知向量a与b同向,b(1,2),ab10.(1)求向量a的坐标;(2)若c(2,1),求(bc)a.解:(1)因为a与
4、b同向,又b(1,2),所以ab(,2)又ab10,所以12210,解得20.因为2符合a与b同向的条件,所以a(2,4)(2)因为bc122(1)0,所以(bc)a0a0.向量的模的问题典例(1)设x,yR,向量a(x,1),b(1,y),c(2,4),且ac,bc,则|ab|()A. B.C2D10(2)已知点A(1,2),若向量与a(2,3)同向,|2,则点B的坐标是_解析(1)由a(2,1),b(1,2),ab(3,1)|ab|.(2)由题意可设a(0),(2,3)又|2,(2)2(3)2(2)2,解得2或2(舍去)(4,6)又A(1,2),B(5,4)答案(1)B(2)(5,4)求向
5、量的模的两种基本策略(1)字母表示下的运算:利用|a|2a2,将向量的模的运算转化为向量与向量的数量积的问题(2)坐标表示下的运算:若a(x,y),则aaa2|a|2x2y2,于是有|a|. 活学活用1已知向量a(cos ,sin ),向量b(,0),则|2ab|的最大值为_解析:2ab(2cos ,2sin ),|2ab|,当且仅当cos 1时,|2ab|取最大值2.答案:22已知平面向量a(2,4),b(1,2),若ca(ab)b,则|c|_.解析:a(2,4),b(1,2),ab2(1)426,ca(ab)b(2,4)6(1,2)(2,4)(6,12)(8,8),|c|8.答案:8向量的
6、夹角和垂直问题典例(1)已知a(3,2),b(1,2),(ab)b,则实数_.(2)已知a(2,1),b(1,1),cakb,dab,c与d的夹角为,则实数k的值为_解析(1)a(3,2),b(1,2),ab(3,22)又(ab)b,(ab)b0,即(3)(1)2(22)0,解得.(2)cakb(2k,1k),dab(1,0),由cos 得,(2k)2(k1)2,k.答案(1)(2)解决向量夹角问题的方法及注意事项(1)先利用平面向量的坐标表示求出这两个向量的数量积ab以及|a|b|,再由cos 求出cos ,也可由坐标表示cos 直接求出cos .由三角函数值cos 求角时,应注意角的取值范
7、围是0.(2)由于0,利用cos 来判断角时,要注意cos 0也有两种情况:一是为锐角,二是0. 活学活用已知平面向量a(3,4),b(9,x),c(4,y),且ab,ac.(1)求b与c;(2)若m2ab,nac,求向量m,n的夹角的大小解:(1)ab,3x49,x12.ac,344y0,y3,b(9,12),c(4,3)(2)m2ab(6,8)(9,12)(3,4),nac(3,4)(4,3)(7,1)设m,n的夹角为,则cos .0,即m,n的夹角为.求解平面向量的数量积典例已知点A,B,C满足|3,|4,|5,求的值解法一定义法如图,根据题意可得ABC为直角三角形,且B,cos A,c
8、os C,45cos(C)53cos(A)20cos C15cos A201525.法二坐标法如图,建立平面直角坐标系,则A(3,0),B(0,0),C(0,4)(3,0),(0,4),(3,4)30040,034(4)16,3(3)(4)09.016925.法三转化法|3,|4,|5,ABBC,0,()|225.求平面向量数量积常用的三个方法(1)定义法:利用定义式ab|a|b|cos 求解;(2)坐标法:利用坐标式aba1b1a2b2解题;(3)转化法:求较复杂的向量数量积的运算时,可先利用向量数量积的运算律或相关公式进行化简,然后进行计算 活学活用如果正方形OABC的边长为1,点D,E分
9、别为AB,BC的中点,那么cosDOE的值为_解析:法一:以O为坐标原点,OA,OC所在的直线分别为x轴,y轴建立平面直角坐标系,如图所示,则由已知条件,可得,.故cosDOE.法二:,|,|,221,cosDOE.答案:层级一学业水平达标1已知向量a(0,2),b(1,),则向量a在b方向上的投影为()A.B3C D3解析:选D向量a在b方向上的投影为3.选D.2设xR,向量a(x,1),b(1,2),且ab,则|ab|()A. B.C2 D10解析:选B由ab得ab0,x11(2)0,即x2,ab(3,1),|ab|.3已知向量a(2,1),b(1,k),a(2ab)0,则k()A12 B
10、6C6 D12解析:选D2ab(4,2)(1,k)(5,2k),由a(2ab)0,得(2,1)(5,2k)0,102k0,解得k12.4a,b为平面向量,已知a(4,3),2ab(3,18),则a,b夹角的余弦值等于()A. BC. D解析:选C设b(x,y),则2ab(8x,6y)(3,18),所以解得故b(5,12),所以cosa,b.5已知A(2,1),B(6,3),C(0,5),则ABC的形状是()A直角三角形 B锐角三角形C钝角三角形 D等边三角形解析:选A由题设知(8,4), (2,4),(6,8),28(4)40,即.BAC90,故ABC是直角三角形6设向量a(1,2m),b(m
11、1,1),c(2,m)若(ac)b,则|a|_.解析:ac(3,3m),由(ac)b,可得(ac)b0,即3(m1)3m0,解得m,则a(1,1),故|a|.答案:7已知向量a(1,),2ab(1,),a与2ab的夹角为,则_.解析:a(1,),2ab(1,),|a|2,|2ab|2,a(2ab)2,cos ,.答案:8已知向量a(,1),b是不平行于x轴的单位向量,且ab,则向量b的坐标为_解析:设b(x,y)(y0),则依题意有解得故b.答案:9已知平面向量a(1,x),b(2x3,x),xR.(1)若ab,求x的值;(2)若ab,求|ab|.解:(1)若ab,则ab(1,x)(2x3,x
12、)1(2x3)x(x)0,即x22x30,解得x1或x3.(2)若ab,则1(x)x(2x3)0,即x(2x4)0,解得x0或x2.当x0时,a(1,0),b(3,0),ab(2,0),|ab|2.当x2时,a(1,2),b(1,2),ab(2,4),|ab|2.综上,|ab|2或2.10在平面直角坐标系xOy中,已知点A(1,4),B(2,3),C(2,1)(1)求及|;(2)设实数t满足(t),求t的值解:(1)(3,1),(1,5),31(1)(5)2.(2,6),|2.(2)t(32t,1t),(2,1),且(t),(t)0,(32t)2(1t)(1)0,t1.层级二应试能力达标1设向
13、量a(1,0),b,则下列结论中正确的是()A|a|b|BabCab与b垂直 Dab解析:选C由题意知|a|1,|b|,ab10,(ab)bab|b|20,故ab与b垂直2已知向量(2,2),(4,1),在x轴上有一点P,使有最小值,则点P的坐标是()A(3,0) B(2,0)C(3,0)D(4,0)解析:选C设P(x,0),则(x2,2),(x4,1),(x2)(x4)2x26x10(x3)21,故当x3时,最小,此时点P的坐标为(3,0)3若a(x,2),b(3,5),且a与b的夹角是钝角,则实数x的取值范围是()A. B.C. D.解析:选Cx应满足(x,2)(3,5)0且a,b不共线,
14、解得x,且x,x.4已知(3,1),(0,5),且, (O为坐标原点),则点C的坐标是()A. B.C. D.解析:选B设C(x,y),则(x,y)又(3,1),(x3,y1),5(x3)0(y1)0,x3.(0,5),(x,y5),(3,4),3x4(y5)0,y,C点的坐标是.5平面向量a(1,2),b(4,2),cmab(mR),且c与a的夹角等于c与b的夹角,则m_.解析:因为向量a(1,2),b(4,2),所以cmab(m4,2m2),所以acm42(2m2)5m8,bc4(m4)2(2m2)8m20.因为c与a的夹角等于c与b的夹角,所以,即,所以,解得m2.答案:26已知正方形ABCD的边长为1,点E是AB边上的动点,则的值为_;的最大值为_解析:以D为坐标原点,建立平面直角坐标系如图所示则D(0,0),A(1,0),B(1,1),C(0,1),设E(1,a)(0a1)所以(1,a)(1,0)1,(1,a)(0,1)a1,故的最大值为1.答案:117已知a,b,c是同一平面内的三个向量,其中a(1,2)(1)若|c|2,且ca,求c的坐标;(2)若|b|,且a2b与2ab垂直,求a与b的夹角.解:(1)设c(x,y),|c|2,2,x2y220.由ca和|c|2,可得解得或故c(2,4)或c(2,4)(2)(a2b)(2ab
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋买卖成交合同样本格式
- 房屋买卖合同案例解析合同违约问题
- 个人房屋抵押借款合同书
- 房屋买卖合同上诉理由
- 公司短期垫资借款合同
- 食品类购销合同样式
- 个人借款协议书模板正式
- 政府采购空调合同的签订与监管方式
- 钢丝绳购销协议模板
- 监控服务合同的终止情形
- 中考数学真题变式题库
- FZ/T 91019-1998染整机械导布辊制造工艺规范
- FZ/T 52025-2012再生有色涤纶短纤维
- SHSG0522003 石油化工装置工艺设计包(成套技术)内容规定
- FMEA-培训教材-汽车fmea培训课件
- 制造部年终总结报告课件
- 粤科版高中通用技术选修1:电子控制技术全套课件
- 知识产权法(英文) Intellectual Property Right Law课件
- 热力管道焊接技术交底记录大全
- 接地装置安装试验记录
- 各级医院健康体检中心基本标准(2019年版)
评论
0/150
提交评论