下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第 3 课时: 1.2 余弦定理(1)【三维目标】:一、知识与技能1.通过对任意三角形边长和角度关系的探索,掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。2.能够运用余弦定理理解解决一些与测量和几何计算有关的实际问题3.通过三角函数、余弦定理、向量数量积等多处知识间联系来体现事物之间的普遍联系与辩证统一.二、过程与方法利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题三、情感、态度与价值观1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.通过三角函数、余弦定理、向量的数量积等知识间的关系,来
2、理解事物之间的普遍联系与辩证统一。【教学重点与难点】:重点:余弦定理的发现和证明过程及其基本应用;难点:向量方法证明余弦定理.【学法与教学用具】:1. 学法:2. 教学用具:多媒体、实物投影仪.【授课类型】:新授课【课时安排】:1课时【教学思路】: 一、创设情景,揭示课题1.正弦定理的内容?2.由正弦定理可解决哪几类斜三角形的问题? 二、研探新知 1余弦定理的向量证明: 方法1:如图,在中,、的长分别为、,+, 即 ;同理可证:, 方法2:建立直角坐标系,则所以,同理可证,注意:此法的优点在于不必对是锐角、直角、钝角进行分类讨论 于是得到以下定理余弦定理:三角形任何一边的平方等于其他两边平方的
3、和减去这两边与它们夹角的余弦的积的两倍,即 思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?语言叙述:三角形任何一边的平方等于其它两边平方的和减去这两边与它们夹角的余弦的积的两倍。用符号语言表示:,等;2. 理解定理注意:(1)熟悉定理的结构,注意“平方”“夹角”“余弦”等(2)余弦定理的应用:已知三边,求三个角;已知两边和它们的夹角,求第三边和其他两个角(3)当夹角为90时,即三角形为直角三角形时即为勾股定理(特例)(4)变形: 思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之
4、间的关系?(由学生总结)若中,C=,则,这时,由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。三、质疑答辩,排难解惑,发展思维 例1 (教材例1)在中,(1)已知,求;(2)已知,求例2 边长为的三角形中,求最大角与最小角的和例3 在中,最大角为最小角的2倍,且三边、为三个连续整数,求、的值例4 在中,、是方程的两根,又,求:(1)角的度数;(2)求的长;(3)的面积四、巩固深化,反馈矫正 1在中,那么这个三角形的最大角是_2. 在中,则_3. 在中,则角的度数是_4. 在中,已知,则最大角的余弦值是_5.已知锐角三角形的边长分别是、,则的取值范围是_6.用余弦定理证明:在中,当为锐角时,;当为钝角时,五、归纳整理,整体认识1.余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;2.余
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 定制装修特价合同范例
- 安防协议合同范例
- 公司签旅游合同范例
- 专业工程合同范例
- 厂家销售任务合同范例
- 中铁采购合同范例
- 修订合同模板通知
- 合同范例概念
- 土地房子置换合同模板
- 出售牵引货车合同范例
- 2024年居间服务委托协议
- 2024年动迁房购买合同范本
- JJG 165-2024钟罩式气体流量标准装置检定规程
- 江西省萍乡市2024-2025学年高二上学期期中考试地理试题
- 新版加油站安全操作规程
- 2023年贵州黔东南州州直机关遴选公务员考试真题
- 货物质量保证措施方案
- 黑龙江省龙东地区2024-2025学年高二上学期阶段测试(二)(期中) 英语 含答案
- 4S店展厅改造装修合同
- (培训体系)2020年普通话测试培训材料
- 3-4单元测试-2024-2025学年统编版语文六年级上册
评论
0/150
提交评论