版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第三节 晶体结构的密堆积原理,1619年,开普勒模型(开普勒从雪花的六边形结构出发提出:固体是由球密堆积成的) 开普勒对固体结构的推测 冰的结构,密堆积的定义,密堆积:由无方向性的金属键、离子键和范德华力等结合的晶体中,原子、离子或分子等微观粒子总是趋向于相互配位数高,能充分利用空间的堆积密度最大的那些结构。 密堆积方式因充分利用了空间,而使体系的势能尽可能降低,而结构稳定。,常见的密堆积类型,最密,非最密,常见密堆积型式,面心立方最密堆积(a1),六方最密堆积(a3),体心立方密堆积(a2),晶体结构内容的相互关系,密堆积原理是一个把中学化学的晶体结构内容联系起来的一个桥梁性的理论体系 。,
2、1.面心立方最密堆积(a1)和六方最密堆积(a3),从上面的等径圆球密堆积图中可以看出: 只有1种堆积形式; 每个球和周围6个球相邻接,配位数位6,形成6个三角形空隙; 每个空隙由3个球围成; 由n个球堆积成的层中有2n个空隙, 即球数:空隙数=1:2。,两层球的堆积情况图,1.在第一层上堆积第二层时,要形成最密堆积,必须把球放在第二层的空隙上。这样,仅有半数的三角形空隙放进了球,而另一半空隙上方是第二层的空隙。 2.第一层上放了球的一半三角形空隙,被4个球包围,形成四面体空隙;另一半其上方是第二层球的空隙,被6个球包围,形成八面体空隙。,两层堆积情况分析,三层球堆积情况分析,第二层堆积时形成
3、了两种空隙:四面体空隙和八面体空隙。那么,在堆积第三层时就会产生两种方式: 1.第三层等径圆球的突出部分落在正四面体空隙上,其排列方式与第一层相同,但与第二层错开,形成abab堆积。这种堆积方式可以从中划出一个六方单位来,所以称为六方最密堆积(a3)。,2.另一种堆积方式是第三层球的突出部分落在第二层的八面体空隙上。这样,第三层与第一、第二层都不同而形成abcabc的结构。这种堆积方式可以从中划出一个立方面心单位来,所以称为面心立方最密堆积(a1)。,六方最密堆积(a3)图,六方最密堆积(a3)分解图,面心立方最密堆积(a一)图,面心立方最密堆积(a1)分解图,a1 型最密堆积图片,将密堆积层
4、的相对位置按照abcabc方式作最密堆积,重复的周期为3层。这种堆积可划出面心立方晶胞。,a3型最密堆积图片,将密堆积层的相对位置按照ababab方式作最密堆积,这时重复的周期为两层。,a1、a3型堆积小结,第二层的密堆积方式也只有一种,但这两层形成的空隙分成两种,正四面体空隙(被四个球包围),正八面体空隙(被六个球包围),突出部分落在正四面体空隙 ab堆积 a3(六方) 突出部分落在正八面体空隙 abc堆积a1(面心立方),第三层 堆积 方式有两种,a1、a3型堆积的比较,以上两种最密堆积方式,每个球的配位数为12。 有相同的堆积密度和空间利用率(或堆积系数),即球体积与整个堆积体积之比。均
5、为74.05%。 空隙数目和大小也相同,n个球(半径r);2n个四面体空隙,可容纳半径为0.225r的小球;n个八面体空隙,可容纳半径为0.414r的小球。,a1、a3的密堆积方向不同: a1:立方体的体对角线方向,共4条,故有4个密堆积方向易向不同方向滑动,而具有良好的延展性。如cu. a3:只有一个方向,即六方晶胞的c轴方向,延展性差,较脆,如mg.,空间利用率的计算,空间利用率:指构成晶体的原子、离子或分子在整个晶体空间中所占有的体积百分比。 球体积 空间利用率= 100% 晶胞体积,a3型最密堆积的空间利用率计算,解:,在a3型堆积中取出六方晶胞,平行六面体的底是 平行四边形,各边长a
6、=2r,则平行四边形的面积:,平行六面体的高:,a1型堆积方式的空间利用率计算,2.体心立方密堆积(a2),a2不是最密堆积。每个球有八个最近的配体(处于边长为a的立方体的8个顶点)和6个稍远的配体,分别处于和这个立方体晶胞相邻的六个立方体中心。故其配体数可看成是14,空间利用率为68.02%. 每个球与其8个相近的配体距离 与6个稍远的配体距离,a2型密堆积图片,3. 金刚石型堆积(a4),配位数为4,空间利用率为 34.01%,不是密堆积。这 种堆积方式的存在因为原 子间存在着有方向性的共 价键力。如si、ge、sn等。 边长为a的单位晶胞含半径 的球8个。,4. 堆积方式及性质小结,堆积
7、方式 点阵形式 空间利用率 配位数 z 球半径 面心立方 最密堆积(a1) 面心立方 74.05% 12 4 六方最密 堆积(a3) 六方 74.05% 12 2 体心立方 密堆积(a2) 体心立方 68.02% 8(或14) 2 金刚石型 堆积(a4) 面心立方 34.01% 4 8,第四节 晶体类型,根据形成晶体的化合物的种类不同可以将晶体分为:离子晶体、分子晶体、原子晶体和金属晶体。,1. 离子晶体,离子键无方向性和饱和性,在离子晶体中正、负离子尽可能地与异号离子接触,采用最密堆积。 离子晶体可以看作大离子进行等径球密堆积,小离子填充在相应空隙中形成的。 离子晶体多种多样,但主要可归结为
8、6种基本结构型式。,(1)nacl,(1)立方晶系,面心立方晶胞; (2)na+和cl- 配位数都是6; (3)z=4 (4) na+,c1-,离子键。 (5)cl- 离子和na+离子沿(111)周期为|acbacb|地堆积,abc表示cl- 离子,abc表示na+离子; na+填充在cl-的正八面体空隙中。,nacl的晶胞结构和密堆积层排列,(nacl, kbr, rbi, mgo, cao, agcl),zns,zns是s2-最密堆积,zn2+填充在一半四面体空隙中。分立方zns和六方zns。,立方zns,(1)立方晶系,面心立方晶胞;z=4 (2)s2-立方最密堆积|aabbcc| (3
9、)zn原子位于面心点阵的阵点位置上;s原子也位于另一个这样的点阵的阵点位置上,后一个点阵对于前一个点阵的位移是体对角线底1/4。原子的坐标是: 4s:0 0 0,1/2 1/2 0,1/2 0 1/2,0 1/2 1/2; 4zn:1/4 1/4 1/4,3/4 3/4 1/4,3/4 1/4 3/4,1/4 3/4 3/4,立方zns晶胞图,六方zns,(1)六方晶系,简单六方晶胞。 (2)z=2 (3)s2-六方最密堆积|aabb|。 (4)配位数4:4。 (6)2s:0 0 0,2/3 1/3 1/2;2zn:0 0 5/8,2/3 1/3 1/8。,六方zns晶胞图,caf2型(萤石)
10、,(1)立方晶系,面心立方晶胞。 (2)z=4 (3)配位数8:4。 (4)ca2+,f-,离子键。 (5)ca2+立方最密堆积,f-填充在全部 四面体空隙中。,(6)ca2+离子配列在面心立方点阵的阵点位置上,f-离子配列在对ca2+点阵的位移各为对角线的1/4与3/4的两个面心立方点阵的阵点上。原子坐标是:4ca2+:0 0 0,1/2 1/2 0,1/2 0 1/2,0 1/2 1/2;8f-:1/4 1/4 1/4,3/4 3/4 1/4,3/4 1/4 3/4,1/4 3/4 3/4,3/4 3/ 4 3/4,1/4 1/4 3/4,1/4 3/4 1/4,3/4 1/4 1/4。,
11、caf2结构图片,caf2的结构图,cscl型:,(1)立方晶系,简单立方晶胞。 (2)z=1。 (3)cs+,cl-,离子键。 (4)配位数8:8。 (5) cs+离子位于简单立方点阵的阵点上位置上,cl-离子也位于另一个这样的点阵的阵点位置上,它对于前者的位移为体对角线的1/2。原子的坐标是:cl-:0 0 0;cs+:1/2 1/2 1/2,(cscl, csbr, csi, nh4cl),tio2型,(1)四方晶系,体心四方晶胞。 (2)z=2 (3)o2-近似堆积成六方密堆积结构,ti4+填入一 半的八面体空隙,每个o2-附近有3个近似于正三角形的ti4+配位。 (4)配位数6:3。
12、,tio2结构图片,2.分子晶体,定义:单原子分子或以共价键结合的有限分子,由范德华力凝聚而成的晶体。 范围:全部稀有气体单质、许多非金属单质、一些非金属氧化物和绝大多数有机化合物都属于分子晶体。 特点:以分子间作用力结合,相对较弱。除范德华力外,氢键是有些分子晶体中重要的作用力。,氢键,定义:,是极性很大的共价键,、是电负性很强的原子。 氢键的强弱介于共价键和范德华力之间; 氢键由方向性和饱和性; 间距为氢键键长,夹角为氢键键角(通常100180 );一般来说,键长越短,键角越大,氢键越强。 氢键对晶体结构有着重大影响。,3.原子晶体,定义:以共价键形成的晶体。 共价键由方向性和饱和性,因此
13、,原子晶体一般硬度大,熔点高,不具延展性。 代表:金刚石、si、ge、sn等的单质, c3n4、sic、sio2等。,4.金属晶体,金属键是一种很强的化学键,其本质是金属中自由电子在整个金属晶体中自由运动,从而形成了一种强烈的吸引作用。 绝大多数金属单质都采用a1、a2和a3型堆积方式;而极少数如:sn、ge、mn等采用a4型或其它特殊结构型式。,金属晶体,ababab, 配位数:12. 例: mg and zn,abcabc, 配为数 : 12, 例: al, cu, ag, au,立方密堆积,面心,金 (gold, au),体心立方 e.g., fe, na, k, u,简单立方(钋,po
14、),简单立方堆积,晶体结构题目分类解析,一、划分晶胞,长期以来人们一直认为金刚石是最硬的物质,但这种神话现在正在被打破。1990年美国伯克利大学的a. y. liu和m. l. cohen在国际著名期刊上发表论文,在理论上预言了一种自然界并不存在的物质c3n4,理论计算表明,这种c3n4物质比金刚石的硬度还大,不仅如此,这种物质还可用作蓝紫激光材料,并有可能是一种性能优异的非线性光学材料。,例题1,这篇论文发表以后,在世界科学领域引起了很大的轰动,并引发了材料界争相合成c3n4的热潮,虽然大块的c3n4晶体至今尚未合成出来,但含有c3n4晶粒的薄膜材料已经制备成功并验证了理论预测的正确性,这比
15、材料本身更具重大意义。其晶体结构见图1和图2。,图1 c3n4在a-b平面 上的晶体结构,图2 c3n4的晶胞结构,(1)请分析c3n4晶体中,c原子和n原子的杂化类型以及它们在晶体中的成键情况; (2)请在图1中画出c3n4的一个结构基元,并指出该结构基元包括 个碳原子和 个氮原子;,(3)实验测试表明,c3n4晶体属于六方晶系,晶胞结构见图2(图示原子都包含在晶胞内),晶胞参数a=0.64nm, c=0.24nm, 请计算其晶体密度, (4)试简要分析c3n4比金刚石硬度大的原因(已知金刚石的密度为3.51g.cm-3)。,答 案,1 解: (1)c3n4晶体中,c原子采取sp3杂化,n原
16、子采取sp2杂化;1个c原子与4个处于四面体顶点的n原子形成共价键,1个n原子与3个c原子在一个近似的平面上以共价键连接。,(2),一个结构基元包括6个c和8个n原子。,(3)从图2可以看出,一个c3n4晶胞包括6个c原子和8个n原子,其晶体密度为: 计算结果表明,c3n4的密度比金刚石还要大,说明c3n4的原子堆积比金刚石还要紧密,这是它比金刚石硬度大的原因之一。,(4)c3n4比金刚石硬度大,主要是因为:(1)在c3n4晶体中,c原子采取sp3杂化,n原子采取sp2杂化,c原子和n原子间形成很强的共价键;(2)c原子和n原子间通过共价键形成网状结构;(3)密度计算结果显示,c3n4晶体中原
17、子采取最紧密的堆积方式,说明原子间的共价键长很短而有很强的键合力。,例题2,题目:今年3月发现硼化镁在39k呈超导性, 可能是人类对超导认识的新里程碑。在硼化镁晶体的理想模型中,镁原子和硼原子是分层排布的,像维夫饼干,一层镁一层硼地相间,图5l是该晶体微观空间中取出的部分原于沿c轴方向的投影,白球是镁原子投影,黑球是硼原子投影,图中的硼原子和镁原子投影在同一平面上。,硼化镁的晶体结构投影图,由图5l可确定硼化镁的化学式为: 画出硼化镁的一个晶胞的透视图,标出该晶胞内面、棱、顶角上可能存在的所有硼原子和镁原子(镁原子用大白球,硼原子用小黑球表示)。,解 答,1 mgb2 2,例题3,最近发现,只
18、含镁、镍和碳三种元素的晶体竟然也具有超导性。鉴于这三种元素都是常见元素,从而引起广泛关注。该晶体的结构可看作由镁原子和镍原子在一起进行(面心)立方最密堆积(ccp),它们的排列有序,没有相互代换的现象(即没有平均原子或统计原子),它们构成两种八面体空隙,一种由镍原子构成,另一种由镍原子和镁原子一起构成,两种八面体的数量比是1 : 3,碳原子只填充在镍原子构成的八面体空隙中。 61 画出该新型超导材料的一个晶胞(碳原子用小球,镍原子用大球,镁原子用大球)。 62 写出该新型超导材料的化学式。,答案,答案: 61(5分) 在(面心)立方最密堆积填隙模型中,八面体空隙与堆积球的比例为1 : 1, 在
19、如图晶胞中,八面体空隙位于体心位置和所有棱的中心位置,它们的比例是1 : 3,体心位置的八面体由镍原子构成,可填入碳原子,而棱心位置的八面体由2个镁原子和4个镍原子一起构成,不填碳原子。,62 (1分) mgcni3(化学式中元素的顺序可不同,但原子数目不能错)。,例题4,c60的发现开创了国际科学界的一个新领域,除c60分子本身具有诱人的性质外,人们发现它的金属掺杂体系也往往呈现出多种优良性质,所以掺杂c60成为当今的研究热门领域之一。经测定c60晶体为面心立方结构,晶胞参数a1420pm。在c60中掺杂碱金属钾能生成盐,假设掺杂后的k填充c60分子堆积形成的全部八面体空隙,在晶体中以k和c
20、60存在,且c60可近似看作与c60半径相同的球体。已知c的范德华半径为170pm,k的离子半径133pm。,(1)掺杂后晶体的化学式为 ;晶胞类型为 ;如果c60为顶点,那么k所处的位置是 ;处于八面体空隙中心的k到最邻近的c60中心距离是 pm。 (2)实验表明c60掺杂k后的晶胞参数几乎没有发生变化,试给出理由。 (3)计算预测c60球内可容纳半径多大的掺杂原子。,解答,这个题目的关键是掺杂c60晶胞的构建。c60形成如下图所示的面心立方晶胞,k填充全部八面体空隙,根据本文前面的分析,这就意味着k处在c60晶胞的体心和棱心,形成类似nacl的晶胞结构。这样,掺杂c60的晶胞确定后,下面的问题也就迎刃而解了。,(1)kc60; 面心立方晶胞;体心和棱心; 710pm(晶胞体心到面心的距离,边长的一半。(2)c60分子形成面心立方最密堆积,由其晶胞参数可得c60分子的半径:,所以c60分子堆积形成的八面体空隙可容纳的球半径为: 这个半径远大于k的离子半径133pm,所以对c60分子堆积形成的面心立方晶胞参数几乎没有影响。 (3)因rc60502pm,所以空腔半径,即c60球内可容纳原子最大半径为: 5021702162pm,例题5,氯仿在苯中的溶解度明显比1,1,1三氯乙烷的大,请给出一种可能的原因(含图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届浙江宁波市高一生物第一学期期末学业质量监测模拟试题含解析
- 2025届云南省施甸县第三中学高二生物第一学期期末监测模拟试题含解析
- 上海宝山同洲模范学校2025届高二上生物期末考试试题含解析
- 广东省广州市越秀区执信中学2025届高二上生物期末达标检测试题含解析
- 上海市金陵中学2025届高二生物第一学期期末预测试题含解析
- 三明市重点中学2025届高二上生物期末预测试题含解析
- 甘肃省宁县二中2025届数学高二上期末教学质量检测模拟试题含解析
- 2025届上海市静安区风华中学生物高一上期末质量检测模拟试题含解析
- 河北省保定唐县第一中学2025届高三英语第一学期期末考试模拟试题含解析
- 2025届新疆乌鲁木齐市十中数学高三第一学期期末达标检测试题含解析
- 2023-2024学年广东省深圳市宝安区宝安中学集团八年级(上)期中历史试卷
- 德育与班级管理的心得体会
- TCHAS 10-4-10-2022 中国医院质量安全管理 第4-10部分:医疗管理病案管理
- 江苏省泰州市海陵区2023-2024学年七年级上学期期中语文试卷
- 驾驶员技能比武方案
- 赫兹伯格双因素理论(正式版)课件
- 神经外科手术治疗颈椎病的研究现状
- 2023水利系统职称考试题库及答案
- 中药调剂员知识竞赛考试题库(附答案)
- LY/T 3354-2023土地退化类型与分级规范
- 北京市商业地产市场细分研究
评论
0/150
提交评论