动量守恒定律的典型模型黄肖斌.ppt_第1页
动量守恒定律的典型模型黄肖斌.ppt_第2页
动量守恒定律的典型模型黄肖斌.ppt_第3页
动量守恒定律的典型模型黄肖斌.ppt_第4页
动量守恒定律的典型模型黄肖斌.ppt_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、动量守恒定律的典型模型及其应用,几个模型:,(一)碰撞中动量守恒,(四)子弹打木块类的问题:,(二)人船模型:平均动量守恒,(三)碰撞中弹簧模型,(五)类碰撞中绳模型,碰撞模型,动量守恒典型模型,一、弹性碰撞,1.在碰撞过程中物体间只有弹性内力做功,系统机械能守恒,这样的碰撞叫弹性碰撞。弹性碰撞前后系统动能相等。2.弹性碰撞应满足:经解得:,一、弹性碰撞,系统机械能守恒,弹性碰撞前后系统动能相等。,3.特点:碰撞过程无机械能损失。相互作用前后的总动能相等。可以得到唯一的解。4.当m1=m2时,v1=v2,v2=v1(速度交换),二、弹性碰撞,完全非弹性碰撞,碰撞后系统以相同的速度运动v1=v2

2、=v,动量守恒:,动能损失为,例1.如图所示,光滑水平面上质量为m1=2kg的物块以v0=2m/s的初速冲向质量为m2=6kg静止的光滑14圆弧面斜劈体。求:,5、分析与比较:下面的模型与该题的异同?,1、物块m1滑到最高点位置时,二者的速度,2、m1上升的最大高度,3、物块m1从圆弧面滑下后,二者速度,若m1=m2物块m1从圆弧面滑下后,二者速度,例2:如图所示,木块质量m=4kg,它以速度v=5m/s水平地滑上一辆静止的平板小车,已知小车质量M=16kg,木块与小车间的动摩擦因数为=0.5,木块没有滑离小车,地面光滑,g取10m/s2,求:(1)木块相对小车静止时小车的速度;(2)从木块滑

3、上小车到木块相对于小车刚静止时,小车移动的距离.(3)要保证木块不滑下平板车,平板车至少要有多长?(4)整个过程中系统机械能损失了多少?,例3、放在光滑水平地面上的小车质量为M.两端各有弹性挡板P和Q,车内表面滑动摩擦因数为,有一质量为m的物体放于车上,对物体施一冲量,使之获得初速v0向左运动,物体在车内与弹性挡板P和Q来回碰撞若干次后,最终物体的速度为多少?,例4:两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为mA=0.5kg,mB=0.3kg,它们的下底面光滑,上表面粗糙;另有一质量mc=0.1kg的滑块C(可视为质点),以vc=25m/s的速度恰好水平地滑到A的上表面,

4、如图所示,由于摩擦,滑块最后停在木块B上,B和C的共同速度为3.0m/s,求:(1)木块A的最终速度;(2)滑块C离开A时的速度。,【例5】如图所示,A、B是静止在水平地面上完全相同的两块长木板,A的左端和B的右端相接触,两板的质量均为M=2.0kg,长度均为l=1.0m,C是一质量为m=1.0kg的木块现给它一初速度v0=2.0m/s,使它从B板的左端开始向右运动已知地面是光滑的,而C与A、B之间的动摩擦因数皆为=0.10求最后A、B、C各以多大的速度做匀速运动取重力加速度g=10m/s2.,解:先假设小物块C在木板B上移动距离x后,停在B上这时A、B、C三者的速度相等,设为V,由动量守恒得

5、,在此过程中,木板B的位移为S,小木块C的位移为S+x,由功能关系得,解、两式得,代入数值得,x比B板的长度l大这说明小物块C不会停在B板上,而要滑到A板上设C刚滑到A板上的速度为v1,此时A、B板的速度为V1,如图示:,则由动量守恒得,由功能关系得,以题给数据代入解得,由于v1必是正数,故合理的解是,当滑到A之后,B即以V1=0.155m/s做匀速运动而C是以v1=1.38m/s的初速在A上向右运动设在A上移动了y距离后停止在A上,此时C和A的速度为V2,如图示:,由动量守恒得,解得V2=0.563m/s,由功能关系得,解得y=0.50m,y比A板的长度小,故小物块C确实是停在A板上最后A、

6、B、C的速度分别为:,二、人船模型,例6:静止在水面上的小船长为L,质量为M,在船的最右端站有一质量为m的人,不计水的阻力,当人从最右端走到最左端的过程中,小船移动的距离是多大?,S,L-S,条件:系统动量守衡且系统初动量为零.,结论:人船对地位移为将二者相对位移按质量反比分配关系,1、“人船模型”是动量守恒定律的拓展应用,它把速度和质量的关系推广到质量和位移的关系。即:m1v1=m2v2则:m1s1=m2s22、此结论与人在船上行走的速度大小无关。不论是匀速行走还是变速行走,甚至往返行走,只要人最终到达船的左端,那么结论都是相同的。3、人船模型的适用条件是:两个物体组成的系统动量守恒,系统的

7、合动量为零。,例7.质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。当他向左走到船的左端时,船左端离岸多远?,应该注意到:此结论与人在船上行走的速度大小无关。不论是匀速行走还是变速行走,甚至往返行走,只要人最终到达船的左端,那么结论都是相同的。,碰撞中弹簧模型,动量守恒典型问题,三、碰撞中弹簧模型,注意:状态的把握由于弹簧的弹力随形变量变化,弹簧弹力联系的“两体模型”一般都是作加速度变化的复杂运动,所以通常需要用“动量关系”和“能量关系”分析求解。复杂的运动过程不容易明确,特殊的状态必须把握:弹簧最长(短)时两体的速度相同;弹簧自由时两体的速度最大(小)。,例8.在一个足

8、够大的光滑平面内,有两质量相同的木块A、B,中间用一轻质弹簧相连.如图所示.用一水平恒力F拉B,A、B一起经过一定时间的匀加速直线运动后撤去力F.撤去力F后,A、B两物体的情况足().(A)在任意时刻,A、B两物体的加速度大小相等(B)弹簧伸长到最长时,A、B的动量相等(C)弹簧恢复原长时,A、B的动量相等(D)弹簧压缩到最短时,系统的总动能最小,ABD,P215新题快递.,碰撞中弹簧模型,例10:如图所示,质量为m的小物体B连着轻弹簧静止于光滑水平面上,质量为2m的小物体A以速度v0向右运动,则(1)当弹簧被压缩到最短时,弹性势能Ep为多大?(2)若小物体B右侧固定一挡板,在小物体A与弹簧分

9、离前使小物体B与挡板发生无机械能损失的碰撞,并在碰撞后立即将挡板撤去,则碰撞前小物体B的速度为多大,方可使弹性势能最大值为2.5Ep?,例11:如图所示,质量为M=4kg的平板车静止在光滑水平面上,其左端固定着一根轻弹,质量为m=1kg的小物体以水平速度v0=5m/s从平板车右端滑上车,相对于平板车向左滑动了L=1m后把弹簧压缩到最短,然后又相对于平板车向右滑动到最右端而与之保持相对静止。求(1)小物体与平板车间的动摩擦因数;(2)这过程中弹性势能的最大值。,1.运动性质:子弹对地在滑动摩擦力作用下匀减速直线运动;木块在滑动摩擦力作用下做匀加速运动。2.符合的规律:子弹和木块组成的系统动量守恒

10、,机械能不守恒。3.共性特征:一物体在另一物体上,在恒定的阻力作用下相对运动,系统动量守恒,机械能不守恒,E=f滑d相对,四.子弹打木块的模型,例12.如图所示,质量为M的木块放在光滑水平面上,质量为m的子弹以速度v0沿水平方向射中木块,并最终留在木块中与木块一起以速度v运动。已知当子弹相对木块静止时木块前进的距离为L,若木块对子弹的阻力f视为恒定,求子弹进入木块深度s,物理过程分析,Sa,Sb,S,a,b,例13.子弹水平射入停在光滑水平地面上的木块中,子弹和木块的质量分别为m和M,从子弹开始接触木块到子弹相对木块静止这段时间内,子弹和木块的位移分别为s1和s2(均为相对地面的位移),则s1:s2_。,例14.如图所示,有两个长方形的物体A和B紧靠在光滑的水平面上,已知mA2kg,mB3kg,有一质量m100g的子弹以v0800m/s的速度水平射入长方体A,经0.01s又射入长方体B,最后停留在B内未穿出。设子弹射入A时所受的摩擦力为3103N。(1)求子弹在射入A的过程中,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论