定积分的换元法_第1页
定积分的换元法_第2页
定积分的换元法_第3页
定积分的换元法_第4页
定积分的换元法_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、定积分的换元法,上一节我们建立了积分学两类基本问题之间的联系微积分基本公式,利用这个公式计算定积分的关键是求出不定积分,而换元法和分部积分法是求不定积分的两种基本方法,如果能把这两种方法直接应用到定积分的计算,相信定能使得定积分的计算简化,下面我们就来建立定积分的换元积分公式和分部积分公式。,先来看一个例子,例1,换元求不定积分,令,则,故,为去掉根号,令,则,当 x 从0连续地增加到4时,t 相应地从1连续地增加到3,于是,尝试一下直接换元求定积分,将上例一般化就得到定积分的换元积分公式,由此可见,定积分也可以象不定积分一样进行换元,所不同的是不定积分换元时要回代原积分变量,而对定积分则只需

2、将其上、下限换成新变量的上、下限即可计算出定积分,而不必回代原积分变量,一、换元公式,证,应用换元公式时应注意:,(1),(2),计算,解1,由定积分的几何意义,等于圆周的第一象限部分的面积,解2,故,o,例2,令,解4,令,仍可得到上述结果,解3,解,令,例3 计算,定积分的换元积分公式也可以反过来使用,为方便计,将换元公式的左、右两边对调,同时把 x 换成 t , t 换成 x,这说明可用,引入新变量,但须注意如明确引入新变量,则必须换限 如没有明确引入新变量,而只是把 整体视为新变量,则不必换限,注,例4 计算,解,例5 计算,解,原式,例6 计算,解一,令,原式,解二,接解一,对,令,则,证,即: 奇函数在对称区间上的积分等于0 偶函数在对称区间上的积分等于对称的 部分区间上积分的两倍 由定积分的几何意义,这个结论也是比较明显的,例8 计算,解,原式,偶函数,奇函数,四分之一单位圆的面积,(1)设,(2)设,证,另证,将上式改写为,奇函数,例10 设 f(x) 是以L为周期的连续函数,证明,证明,与 a 的值无关,例11 设 f(x) 连续,常数 a 0 证明,证明,比较等式两边的被积函数知,,例12 设 f ( x ) 连续,解,定积分的换元法,几个特殊积分、定积分的几个等式,二、小结

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论