青海省西宁市海湖中学2020届高三数学上学期第二次阶段考试试题(通用)_第1页
青海省西宁市海湖中学2020届高三数学上学期第二次阶段考试试题(通用)_第2页
青海省西宁市海湖中学2020届高三数学上学期第二次阶段考试试题(通用)_第3页
青海省西宁市海湖中学2020届高三数学上学期第二次阶段考试试题(通用)_第4页
青海省西宁市海湖中学2020届高三数学上学期第二次阶段考试试题(通用)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、青海省西宁市海湖中学2020届高三数学上学期第二次阶段考试试题考试时间:120分钟 分值:150 命题人: 审题人: 一、选择题(12*5分=60分)1复数i(2 i-1)()A2i B2i C2i D2i2已知集合Ax|x10,B0,1,2,则AB()A0B1 C1,2 D0,1,23命题“x1,2,x23x20”的否定为()Ax1,2,x23x20 Bx1,2,x23x20Cx01,2,x3x020 Dx01,2,x3x0204如果函数,那么函数f(x)的定义域是()A 0,2 B1,1 C2,2 D,5下面各组函数中为相同函数的是()A,g(x)x1Bf(x),g(x)Cf(x)ln e

2、x与g(x)eln xDf(x)x0与g(x)6函数f(x)(x2a)(xa)2的导数为()A2(x2a2) B2(x2a2) C3(x2a2) D3(x2a2)7已知alog2e,bln2,clog,则a,b,c的大小关系为()Aabc Bbac Ccba Dcab8已知5,则sin2sincos的值是()A. B C2 D29已知为第二象限角,且sin2,则cossin的值为()A. B C. D10已知向量a(2,1),b(3,4),c(k,2),若(3ab)c,则实数k的值为()A8 B6 C1 D611在ABC中,角A,B,C的对边分别为a,b,c,若,(bca)(bca)3bc,则

3、ABC的形状为()A直角三角形 B等腰非等边三角形 C等边三角形 D钝角三角形12现有四个函数:yxsinx,yxcosx,yx|cosx|,yx2x的部分图象如图,但顺序被打乱,则按照图象从左到右的顺序,对应的函数序号正确的一组是()A B C D二、填空题(4*5分=20分)13在命题“若mn,则m2n2”的逆命题、否命题、逆否命题中,假命题的个数是_14已知函数f(x)是定义在R上的奇函数,当x(,0)时,f(x)2x3x2,则f(2)_.15过点P(1,1)与函数y相切的直线与坐标轴围成的三角形面积为_16平行四边形ABCD中,M为BC的中点,若,则_.三 、解答题(6题 共70分)1

4、7、(本题满分10分)已知函数f(x)aexlnx1.(1) 设x2是f(x)的极值点,求a;(2) 求f(x)的单调区间;18、(本题满分12分)ABC的内角A,B,C的对边分别为a,b,c,且满足a2,acosB(2cb)cosA.(1)求角A的大小;(2)求ABC的周长的最大值19、(本题满分12分) 某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人第一组工人用第一种生产方式,第二组工人用第二种生产方式根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断

5、哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,P(K2k)0.0500.0100.001k3.841 6.63510.828 20、(本题满分12分)设函数f(x)sinsin,其中03,已知f0.(1)求;(2)将函数yf(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数yg(x)的图象,求g(x)在上的最小值 21、(

6、本题满分12分) 已知函数f(x).(1)求曲线yf(x)在点(0,1)处的切线方程;(2)证明:当a1时,f(x)e0.22、(本题满分12分)在平面直角坐标系xOy中,直线C1的方程为xy20,以O为极点,x轴的非负半轴为极轴建立极坐标系,圆C2的极坐标方程为24sin10.(1)求圆C2在直角坐标系下的标准方程;(2)若直线C1与圆C2交于P,Q两点,求OPQ的面积 海湖中学2020学年高三数学第二阶段考测试题(答案)一、选择题(每小题5分,满分60分)题号123456789101112答案CCCDDCDABBCA二、13.3 14. 12 15.2 16.2/9三、17、解析:(1)f

7、(x)的定义域为(0,),f(x)aex.由题设知,f(2)0,所以a.(2)f(x)exlnx1,f(x)ex.当0x2时,f(x)2时,f(x)0.所以f(x)在(0,2)上单调递减,在(2,)上单调递增18. 解析:(1)解法一由已知,得acosBbcosA2ccosA.由正弦定理,得sinAcosBsinBcosA2sinCcosA,即sin(AB)2sinCcosA.因为sin(AB)sin(C)sinC,所以sinC2sinCcosA.因为sinC0,所以cosA.因为0A,所以A.解法二由已知及余弦定理,得a(2cb),即b2c2a2bc,所以cosA.因为0A,所以A.(2)解

8、法一由余弦定理a2b2c22bccosA,得bc4b2c2,即(bc)23bc4.因为bc2,所以(bc)2(bc)24,即bc4(当且仅当bc2时等号成立),所以abc6.故ABC的周长的最大值为6.解法二因为,且a2,A,所以bsinB,csinC.所以abc2(sinBsinC)224sin.因为0B6.635,所以有99%的把握认为两种生产方式的效率有差异20、解析:(1)因为f(x)sinsin,所以f(x)sinxcosxcosxsinxcosxsin.由题设知f0,所以k,kZ,故6k2,kZ.又03,所以2.(2)由(1)得f(x)sin,所以g(x)sinsin.因为x,所以x.当x,即x时,g(x)取得最小值.21. 解析:(1)f(x),f(0)2.因此曲线yf(x)在(0,1)处的切线方程是2xy10.(2)证明:当a1时,f(x)e(x2x1ex1)ex.令g(x)x2x1ex1,则g(x)2x1ex1.当x1时,g(x)1时,g(x)0,g(x)单调递增所以g(x)g(1)0.因此f(x)e0.22解析:(1)24sin10,即22sin2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论