




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、福建省长泰一中高考数学一轮复习函数的定义域和值域教案基础过关一、定义域:例如: 形如y,可采用 法; y,可采用 法或 法; yaf (x)2bf (x)c,可采用 法; yx,可采用 法; yx,可采用 法; y可采用 法等.典型例题例1. 求下列函数的定义域:(1)y=; (2)y=; (3)y=.解:(1)由题意得化简得即故函数的定义域为x|x0且x-1.(2)由题意可得解得故函数的定义域为x|-x且x.(3)要使函数有意义,必须有即x1,故函数的定义域为1,+).变式训练1:求下列函数的定义域:(1)y=+(x-1)0 ; (2)y=+(5x-4)0; (3)y=+lgcosx;解:(
2、1)由得所以-3x2且x1.故所求函数的定义域为(-3,1)(1,2).(2)由得函数的定义域为(3)由,得借助于数轴,解这个不等式组,得函数的定义域为例2. 设函数y=f(x)的定义域为0,1,求下列函数的定义域.(1)y=f(3x); (2)y=f();(3)y=f(; (4)y=f(x+a)+f(x-a).解:(1)03x1,故0x,y=f(3x)的定义域为0, .(2)仿(1)解得定义域为1,+).(3)由条件,y的定义域是f与定义域的交集.列出不等式组故y=f的定义域为.(1)y= (2)y=x-; (3)y=.解:(1)方法一 (配方法)y=1-而0值域为.方法二 (判别式法)由y
3、=得(y-1)y=1时,1.又R,必须=(1-y)2-4y(y-1)0.函数的值域为.(2)方法一 (单调性法)定义域,函数y=x,y=-均在上递增,故y函数的值域为.方法二 (换元法)令=t,则t0,且x=y=-(t+1)2+1(t0),y(-,.(3)由y=得,ex=ex0,即0,解得-1y1.函数的值域为y|-1y1.变式训练3:求下列函数的值域:(1)y=; (2)y=|x|.解:(1)(分离常数法)y=-,0,y-.故函数的值域是y|yR,且y-.(2)方法一 (换元法)1-x20,令x=sin,则有y=|sincos|=|sin2|,故函数值域为0,.方法二 y=|x|0y即函数的
4、值域为.例4若函数f(x)=x2-x+a的定义域和值域均为1,b(b1),求a、b的值.解:f(x)=(x-1)2+a-. 其对称轴为x=1,即1,b为f(x)的单调递增区间.f(x)min=f(1)=a-=1 f(x)max=f(b)=b2-b+a=b 由解得 变式训练4:已知函数f(x)=x2-4ax+2a+6 (xR).(1)求函数的值域为0,+)时的a的值;(2)若函数的值均为非负值,求函数f(a)=2-a|a+3|的值域.解: (1)函数的值域为0,+),=16a2-4(2a+6)=02a2-a-3=0a=-1或a=.(2)对一切xR,函数值均非负,=8(2a2-a-3)0-1a,a+30,f(a)=2-a(a+3)=-a2-3a+2=-(a+)2+(a).二次函数f(a)在上单调递减,f(a)min=f=-,f(a)max=f(-1)=4,f(a)的值域为.小结归纳1求函数的定义域一般有三类问题:一是给出解释式(如例1),应抓住使整个解式有意义的自变量的集合;二是未给出解析式(如例2),就应抓住内函数的值域就是外函数的定义域;三是实际问题,此时函数的定义域除使解析式有意义外,还应使实际问题或几何问题有意义.2求函数的值域没有通用方法和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 营销现场作业安全管理和反窃电技能竞赛参考练习卷附答案
- 厂房出租合法合同
- 《对外开放的基本国策》了解基本国策与发展战略课件-4
- 成都买卖商铺合同范本
- 香蕉园收购合同范本
- 服装主播合同范本
- 博士通软件合同范本
- 租车公司买车合同范本
- 小区建造车位合同范本
- 摄像婚礼合同范本
- 《农业企业经营与管理》课件-项目七 农产品质量安全
- DZ∕T 0173-2022 大地电磁测深法技术规程(正式版)
- 代理记账业务规范-代理记账业务内部规范制度
- DB32∕T 3255-2017 液氯汽车罐车、罐式集装箱卸载安全技术要求
- 中级考试外科基础题
- 基层派出所消防培训
- 中小学生中医药科普知识竞赛
- 初三化学原子的结构课件1
- 《控制计划培训》课件
- 中学风险辨识评估和应急资源调查报告
- 2025年4月自考00262法律文书写作押题及答案
评论
0/150
提交评论