抽象函数解题方法与技巧_第1页
抽象函数解题方法与技巧_第2页
抽象函数解题方法与技巧_第3页
抽象函数解题方法与技巧_第4页
抽象函数解题方法与技巧_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、抽象函数解题方法与技巧函数的周期性:1、定义在xR上的函数y=f(x),满足f(x+a)=f(x-a)(或f(x-2a)=f(x))(a0)恒成立,则y=f(x)是周期为2a的周期函数;2、若y=f(x)的图像关于直线x=a和x=b对称,则函数y=f(x)是周期为2|a-b|的周期函数;3、若y=f(x) 的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a-b|的周期函数;4、若y=f(x) 的图像有一个对称中心A(a,0)和一条对称轴x=b(ab),则函数y=f(x)是周期为4|a-b|的周期函数;5、若函数y=f(x)满足f(a+x)=f(a-x),其中a0,且如果y

2、=f(x)为奇函数,则其周期为4a;如果y=f(x)为偶函数,则其周期为2a;6、定义在xR上的函数y=f(x),满足f(x+a)=-f(x),则y=f(x)是周期为2|a|的周期函数;7、若在xR恒成立,其中a0,则y=f(x)是周期为4a的周期函数;8、若在xR恒成立,其中a0,则y=f(x)是周期为2a的周期函数。(7、8应掌握具体推导方法,如7)函数图像的对称性:1、若函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图像关于直线对称;2、若函数y=f(x)满足f(x)=f(2a-x)或f(x+a)=f(a-x),则函数y=f(x)的图像关于直线x=a对称;3、若函数

3、y=f(x)满足f(a+x)+f(b-x)=c,则y=f(x)的图像关于点成中心对称图形;4、曲线f(x,y)=0关于点(a,b)的对称曲线的方程为f(2a-x,2b-y)=0;5、形如的图像是双曲线,由常数分离法知:对称中心是点;6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b-x)的图像关于直线对称;7、若函数y=f(x)有反函数,则y=f(a+x)和y=f -1(x+a)的图像关于直线y=x+a对称。一、 换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法.例1. 已知f(1+sinx)=2+sinx+cos2x, 求f(x)二、方程组法 运用方

4、程组通过消参、消元的途径也可以解决有关抽象函数的问题。例2三、待定系数法 如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。例3已知f(x)是二次函数,且f(x+1)+f(x-1)=2x2-4x,求f(x).四、赋值法 有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。例4对任意实数x,y,均满足f(x+y2)=f(x)+2f(y)2且f(1)0,则f(2001)=_.例5已知f(x)是定义在R上的不恒为零的函数,且对于任意的实数a,b都满足f(ab)=af(b)+bf(a). (1)求f(0),f(1)的值;(2)判断f(x)的奇偶性,并证明你的结论

5、;五、转化法 通过变量代换等数学手段将抽象函数具有的性质与函数的单调性等定义式建立联系,为问题的解决带来极大的方便.例6设函数f(x)对任意实数x,y,都有f(x+y)=f(x)+f(y),若x0时f(x)0且a1)f(x+y)=f(x)f(y)对数函数 f(x)=logax (a0且a1)f(xy)=f(x)+f(y) 正、余弦函数 f(x)=sinx f(x)=cosxf(x+T)=f(x)正切函数 f(x)=tanx余切函数 f(x)=cotx例10已知实数集上的函数f(x)恒满足f(2+x)= f(2-x),方程f(x)=0有5个实根,则这5个根之和=_例11设定义在R上的函数f(x)

6、,满足当x0时,f(x)1,且对任意x,yR,有f(x+y)=f(x)f(y),f(1)=2 (1)解不等式f(3x-x2)4;(2)解方程f(x)2+f(x+3)=f(2)+1例12已知函数f(x)对任何正数x,y都有f(xy)=f(x)f(y),且f(x)0,当x1时,f(x)0)恒成立,则y=f(x)是周期为2a的周期函数;2、若y=f(x)的图像关于直线x=a和x=b对称,则函数y=f(x)是周期为2|a-b|的周期函数;3、若y=f(x) 的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a-b|的周期函数;4、若y=f(x) 的图像有一个对称中心A(a,0)和一

7、条对称轴x=b(ab),则函数y=f(x)是周期为4|a-b|的周期函数;5、若函数y=f(x)满足f(a+x)=f(a-x),其中a0,且如果y=f(x)为奇函数,则其周期为4a;如果y=f(x)为偶函数,则其周期为2a;6、定义在xR上的函数y=f(x),满足f(x+a)=-f(x),则y=f(x)是周期为2|a|的周期函数;7、若在xR恒成立,其中a0,则y=f(x)是周期为4a的周期函数;8、若在xR恒成立,其中a0,则y=f(x)是周期为2a的周期函数。(7、8应掌握具体推导方法,如7)函数图像的对称性:1、若函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图像关

8、于直线对称;2、若函数y=f(x)满足f(x)=f(2a-x)或f(x+a)=f(a-x),则函数y=f(x)的图像关于直线x=a对称;3、若函数y=f(x)满足f(a+x)+f(b-x)=c,则y=f(x)的图像关于点成中心对称图形;4、曲线f(x,y)=0关于点(a,b)的对称曲线的方程为f(2a-x,2b-y)=0;5、形如的图像是双曲线,由常数分离法知:对称中心是点;6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b-x)的图像关于直线对称;7、若函数y=f(x)有反函数,则y=f(a+x)和y=f -1(x+a)的图像关于直线y=x+a对称。二、 换元法 换元法包括

9、显性换元法和隐性换元法,它是解答抽象函数问题的基本方法.例2. 已知f(1+sinx)=2+sinx+cos2x, 求f(x)解:令u=1+sinx,则sinx=u-1 (0u2),则f(u)=-u2+3u+1 (0u2)故f(x)=-x2+3x+1 (0x2)二、方程组法 运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题。例2解:三、待定系数法 如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。例3已知f(x)是多项式函数,且f(x+1)+f(x-1)=2x2-4x,求f(x).解:由已知得f(x)是二次多项式,设f(x)=ax2+bx+c (a0)代入f(x+

10、1)=a(x+1)2+b(x+1)+c=ax2+(2a+b)x+a+b+cf(x-1)= a(x-1)2+b(x-1)+c=ax2+( b -2a)x+a-b+cf(x+1)+ f(x-1)=2ax2+2bx+2a+2c=2x2-4x比较系数得:a=1,b= -2,c= -1 , f(x)=x2-2x-1.四、赋值法 有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。例4对任意实数x,y,均满足f(x+y2)=f(x)+2f(y)2且f(1)0,则f(2001)=_.解:令x=y=0,得:f(0)=0,令x=0,y=1,得f(0+12)=f(0)+2f(1)2,f(1)0

11、 f(1)= . 令x=n,y=1,得f(n+1)=f(n)+2f(1)2=f(n)+ 即f(n+1)-f(n)= ,故f(n)= ,f(2001)= 例5已知f(x)是定义在R上的不恒为零的函数,且对于任意的实数a,b都满足f(ab)=af(b)+bf(a). (1)求f(0),f(1)的值;(2)判断f(x)的奇偶性,并证明你的结论;(3)若f(2)=2,un=f(2n) (nN*),求证:un+1un (nN*).解:(1)令a=b=0,得f(0)=0,令a=b=1,得f(1)=0.(2)f(x)是奇函数。因为:令a=b=-1,得f(-1)(-1)=-f(-1)-f(-1),f(-1)=

12、0,故f(-x)=f(-1)(x)= -f(x)+xf(-1)= -f(x),故f(x)为奇函数.(3)先用数学归纳法证明:un=f(2n)0 (nN*)(略)五、转化法 通过变量代换等数学手段将抽象函数具有的性质与函数的单调性等定义式建立联系,为问题的解决带来极大的方便.例6设函数f(x)对任意实数x,y,都有f(x+y)=f(x)+f(y),若x0时f(x)0,且f(1)= -2,求f(x)在-3,3上的最大值和最小值。解:令x=y=0,得f(0)=0,令y=-x,得f(-x)+f(x)=f(0)=0,即f(x)为奇函数.设x10,由已知得f(x2-x1)0,故f(x2)=f(x2-x1+

13、x1)=f(x2-x1)+f(x1) f(x1)所以f(x)是R上的减函数,又f(3)=f(1)+f(2)=3f(1)=-6,f(-3)=6故f(x)在-3,3上的最大值为6,最小值为-6.例7定义在R+上的函数f(x)满足: 对任意实数m,f(xm)=mf(x); f(2)=1.(1)求证:f(xy)=f(x)+f(y)对任意正数x,y都成立;(2)证明f(x)是R+上的单调增函数;(3)若f(x)+f(x-3)2,求x 的取值范围。解:(1)令x=2m,y=2n,其中m,n为实数,则f(xy)=f(2m+n)=(m+n)f(2)=m+n.又f(x)+f(y)=f(2m)+f(2n)=mf(

14、2)+nf(2)=m+n,所以f(xy)=f(x)+f(y)(2)证明:设0x1x2,可令mn且使x1=2m,x2=2n由(1)得f(x1)-f(x2)=f(2m-n)=(m-n)f(2)=m-n0故f(x1)f(x2),即f(x)是R+上的增函数。(3)由f(x)+f(x-3)2及f(x)的性质,得fx(x-3)2f(2)=f(4)解得 30且a1)f(x+y)=f(x)f(y)对数函数 f(x)=logax (a0且a1)f(xy)=f(x)+f(y) 正、余弦函数 f(x)=sinx f(x)=cosxf(x+T)=f(x)正切函数 f(x)=tanx余切函数 f(x)=cotx例10已

15、知实数集上的函数f(x)恒满足f(2+x)= f(2-x),方程f(x)=0有5个实根,则这5个根之和=_分析:因为函数f(x)恒满足f(2+x)= f(2-x),方程f(x)=0有5个实根,可以将该函数看成是类似于二次函数y=k(x-2)2为模型引出解题思路,即函数的对称轴是x=2,并且函数在f(2)=0,其余的四个实数根关于x=2对称解:因为实数集上的函数f(x)恒满足f(2+x)= f(2-x),方程f(x)=0有5个实根,所以函数关于直线x=2对称,所以方程的五个实数根也关于直线x=2对称,其中有一个实数根为2,其它四个实数根位于直线x=2两侧,关于直线x=2对称,则这5个根之和为10

16、。例11设定义在R上的函数f(x),满足当x0时,f(x)1,且对任意x,yR,有f(x+y)=f(x)f(y),f(1)=2 (1)解不等式f(3x-x2)4;(2)解方程f(x)2+f(x+3)=f(2)+1分析:可联想指数函数f(x)=ax。解:(1)先证f(x)0,且单调递增,因为f(x)=f(x+0)=f(x)f(0),x0时f(x)1,所以f(0)=1对于任意x0,f(x)f(-x)=f(x-x)=f(0)=1,f(x)=-x0,f(-x)1 0f(x)0任取x1,x2R且x10,f(x2-x1)1,所以f(x1)-f(x2)=f(x2-x1)+x1-f(x1)=f(x2-x1)f(x1)-f(x1)=f(x1)f(x2-x1)-10所以xR时,f(x)为增函数。不等式f(3x-x2)4可化为3x-x22 解得:x|1x1时,f(x)0设x1,x2R+,且x1f

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论