




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、AP CALCULUS AB REVIEWChapter 2 Differentiation Definition of Tangent Line with Slop m If f is defined on an open interval containing c, and if the limit limx0yx= limx0fc+x-f(c)x=m exists, then the line passing through (c, f(c) with slope m is the tangent line to the graph of f at the point (c, f(c).
2、 Definition of the Derivative of a Function The Derivative of f at x is given by fx= limx0fc+x-f(c)x provided the limit exists. For all x for which this limit exists, f is a function of x. *The Power Rule *The Product Rule *ddxsinx= cosx *ddxcosx= -sinx *The Chain Rule Implicit Differentiation (take
3、 the derivative on both sides; derivative of y is y*y) Chapter 3 Applications of Differentiation *Extrema and the first derivative test (minimum: + , maximum: + , + & are the sign of f(x) ) *Definition of a Critical Number Let f be defined at c. If f(c) = 0 OR IF F IS NOT DIFFERENTIABLE AT C, then c
4、 is a critical number of f. *Rolles Theorem If f is differentiable on the open interval (a, b) and f (a) = f (b), then there is at least one number c in (a, b) such that f(c) = 0. *The Mean Value Theorem If f is continuous on the closed interval a, b and differentiable on the open interval (a, b), t
5、hen there exists a number c in (a, b) such that f(c) = fb- f(a)b-a. *Increasing and decreasing interval of functions (take the first derivative) *Concavity (on the interval which f 0, concave up) *Second Derivative Test Let f be a function such that f(c) = 0 and the second derivative of f exists on
6、an open interval containing c.1. If f(c) 0, then f(c) is a minimum2. If f(c) 0, then f(c) is a maximum *Points of Inflection (take second derivative and set it equal to 0, solve the equation to get x and plug x value in original function)*Asymptotes (horizontal and vertical)*Limits at Infinity*Curve
7、 Sketching (take first and second derivative, make sure all the characteristics of a function are clear) Optimization Problems*Newtons Method (used to approximate the zeros of a function, which is tedious and stupid, DO NOT HAVE TO KNOW IF U DO NOT WANT TO SCORE 5)Chapter 4 & 5 Integration *Be able
8、to solve a differential equation *Basic Integration Rules 1)undu= un+1n+1+ C, n-1 2)sinudu= -cosu+ C 3)cosu du= sinu+ C 4)1u du= lnu *Integral of a function is the area under the curve *Riemann Sum (divide interval into a lot of sub-intervals, calculate the area for each sub-interval and summation i
9、s the integral). *Definite integral *The Fundamental Theorem of Calculus If a function f is continuous on the closed interval a, b and F is an anti-derivative of f on the interval a, b, then abfxdx=Fb- F(a). *Definition of the Average Value of a Function on an Interval If f is integrable on the clos
10、ed interval a, b, then the average value of f on the interval is 1b-a abf(x)dx.*The second fundamental theorem of calculus If f is continuous on an open internal I containing a, then, for every x in the interval, ddx axftdt=f(x).*Integration by Substitution*Integration of Even and Odd Functions 1) I
11、f f is an even function, thenabfxdx=2abf(x)dx. 2) If f is an odd function, thenabfxdx=0.*The Trapezoidal Rule Let f be continuous on a, b. The trapezoidal Rule for approximating abfxdx is given by abfxdx b-a2n fx0+2fx1+2fx2+2fxn-1 +fxnMoreover, a n , the right-hand side approachesabfxdx.*Simpsons Ru
12、le (n is even)Let f be continuous on a, b. Simpsons Rule for approximating abfxdx is abfxdxb-a3n fx0+4fx1+2fx2+4fx3+4fxn-1+fxnMoreover, as n, the right-hand side approaches abfxdx*Inverse functions(y=f(x), switch y and x, solve for x) *The Derivative of an Inverse Function Let f be a function that i
13、s differentiable on an interval I. If f has an inverse function g, then g is differentiable at any x for which f(g(x)0. Moreover, gx= 1f(g(x) , f(g(x)0. *The Derivative of the Natural Exponential Function Let u be a differentiable function of x.1. ddxex= ex 2.ddxeu= eududx . *Integration Rules for E
14、xponential Functions Let u be a differentiable function of x. eudu= eu+C. Derivatives for Bases other than e Let a be a positive real number (a 1) and let u be a differentiable function of x. 1.ddxau=(lna)aududx 2.ddxlogau=1ulnadudx axdx=1lnaax+C limx(1+1x)x=limx(x+1x)x=e *Derivatives of Inverse Trigonometric Functions Let u be a differentiable function of x. ddxsin-1u=u1-u2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 元钢意向协议书范本
- 旅馆转让协议书范本
- 2025届安徽省淮北市一中物理高二下期末教学质量检测模拟试题含解析
- 数字智慧方案5362丨雷万云企业数字化转型的内涵及云策略
- 2025福建龙岩市供电服务有限公司招聘23人笔试历年参考题库附带答案详解
- 格林巴利诊断依据
- 2025届吉林省盟校物理高一下期末质量检测模拟试题含解析
- 2025福建南平盐业有限责任公司招聘6人笔试历年参考题库附带答案详解
- 2025广西百色西江投资发展有限公司招聘28人笔试历年参考题库附带答案详解
- 互联网+物流2025年即时配送行业配送路径优化与成本控制策略研究
- 叙事护理学智慧树知到期末考试答案章节答案2024年中国人民解放军海军军医大学
- 2024四川省南部县事业单位招聘45人历年公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- PDCA提高卧床患者踝泵运动的执行率
- NBT《风电场工程施工质量检验与评定规程》
- 儿科护理安全不良事件
- 中国硒化汞行业市场现状分析及竞争格局与投资发展研究报告2024-2029版
- 票务购票合同
- INSAR技术在城市地面沉降监测中的应用
- 九年级化学下册 第11单元 课题2 化学肥料课件 新人教版
- 自然资源执法监察工作规范培训课件
- 报价单(报价单模板)
评论
0/150
提交评论