河南省信阳市等五市2025届高三下学期第一次联考数学试题(解析版)_第1页
河南省信阳市等五市2025届高三下学期第一次联考数学试题(解析版)_第2页
河南省信阳市等五市2025届高三下学期第一次联考数学试题(解析版)_第3页
河南省信阳市等五市2025届高三下学期第一次联考数学试题(解析版)_第4页
河南省信阳市等五市2025届高三下学期第一次联考数学试题(解析版)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高级中学名校试题PAGEPAGE1河南省信阳市等五市2025届高三下学期第一次联考数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,,,则()A. B.C. D.【答案】A【解析】因为全集,,,则,,,所以.故选:A.2.已知复数满足,则()A. B. C. D.【答案】D【解析】因为,所以.故选:D.3.已知是各项均为正数的等比数列,其前项和为,,且与的等差中项为4,则等于()A. B. C. D.【答案】B【解析】设等比数列的公比为,因为与的等差中项为4,所以,又,所以,所以,解得或(舍去),所以的通项公式为,所以.故选:B.4.若,,,则向量在向量上的投影向量为()A. B. C. D.【答案】D【解析】因为,,,则,即,所以向量在向量上的投影向量为.故选:D.5.已知角和的终边关于直线对称,且,则()A. B. C. D.【答案】D【解析】设角的终边与单位圆的交点为,由题意可知角的终边与单位圆的交点为,所以,所以由,可得:,所以,,,其中,所以,即,所以,所以,故选:D6.已知定义在上的函数与函数的图象有唯一公共点,则实数的值为()A.-2 B.-1 C.1 D.2【答案】C【解析】易知的图象关于对称,且当时,单调递增,当时单调递减,又,由可看作向右平移两个单位得到,所以的图象也关于对称,由于函数与函数的图象有唯一公共点,即方程只有一根,因为两函数图象都关于对称,所以方程的根为2,即,解得:,经检验符合题意,故选:C7.某次跳水比赛甲、乙、丙、丁、戊5名跳水运动员进入跳水比赛决赛,现采用抽签法决定决赛跳水顺序,在“运动员甲不是第一个出场,运动员乙不是最后一个出场”的前提下,“运动员丙第一个出场”的概率为()A. B. C. D.【答案】A【解析】“运动员甲不是第一个出场,运动员乙不是最后一个出场”可分为甲最后一个出场或甲在中间出场,方法数为,在“运动员甲不是第一个出场,运动员乙不是最后一个出场”的前提下,“运动员丙第一个出场”,即“运动员丙第一个出场,运动员乙不是最后一个出场”,方法数为,因此所求概率为.故选:A.8.将椭圆上所有的点绕原点旋转角,得到椭圆的方程:,则下列说法中不正确的是()A. B.C.椭圆的离心率为 D.是椭圆的一个焦点【答案】C【解析】椭圆上所有的点绕原点旋转角,得到椭圆的方程:,设点在该椭圆上,则其关于的对称点代入椭圆方程有,即,则该对称点位于椭圆方程上,同理可得其关于的对称点代入椭圆方程有,即,则该对称点位于椭圆方程上,所以关于直线,所以,故A正确;将代入,可得,所以,所以椭圆长轴的顶点为,所以,故B正确;将将代入,可得,所以,所以椭圆短轴的顶点为,所以,所以,所以,故C不正确;焦点在,结合,可得焦点坐标为,故D正确.故选:C.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在一次考试后的数学成绩分析中,分别采用简单随机抽样的方式抽取班的一组数据:,,,,,和班的一组数据:,,,进行分析.经计算,两组数据的平均数分别为,,方差分别为,.将两组数据合并为一组数据,则这组新数据的平均数和方差分别为()A.平均数为85 B.平均数为86 C.方差为28 D.方差为52【答案】BD【解析】,故选:BD10.对于给定数列,如果存在常数p,q使得对于任意都成立,我们称数列是“数列”.下列说法正确的有()A.若,,则数列是“数列”B.共,,则数列“数列”C.若数列是“数列”,则数列不是“H数列”D.若数列满足,,t为常数,则数列前2024项的和为【答案】AB【解析】对于A,因为,有,则,,故数列是“数列”,故A正确;对于B,因为,有,则,,故数列是“数列”,故B正确;对于C,若数列是“数列”,则存在实常数p,q使得对于任意都成立,显然对于任意都成立,因此对于任意都成立,故数列数列也是“H数列”,对应的实常数分别为,故C不正确;对于D,因为,则,,,,所以数列前2024项的和为,故D错误.故选:AB.11.阿基米德(公元前287年—公元前212年)是古希腊伟大的物理学家、数学家、天文学家,他曾经定义了抛物线阿基米德三角形:抛物线的弦与弦的端点处的两条切线围成的三角形称为抛物线阿基米德三角形.设抛物线上两个不同点A,B横坐标分别为,,以A,B为切点的切线交于P点.关于阿基米德三角形PAB的说法正确的有()A.若过抛物线的焦点,则点一定在抛物线的准线上B.若为正三角形,则其面积为C.若,则的面积的最小值为D.一般情况下,的面积【答案】ABC【解析】由题意可知:直线一定存在斜率,所以设直线的方程为:,由题意可知:点,不妨设,由,所以直线切线的方程分别为:,两方程联立得:,解得:,所以点坐标为:,直线的方程与抛物线方程联立得:.对于A:抛物线:的焦点坐标为,准线方程为,因为过抛物线的焦点,所以,而,显然点一定在抛物线的准线上,故A正确;对于B:因为阿基米德三角形为正三角形,所以有,则,因为,所以化简得:,此时,点坐标为:,因为阿基米德三角形为正三角形,所以有,所以,因此正三角形的边长为,所以正三角形的面积为,故B正确;对于C:阿基米德三角形为直角三角形,当时,所以,即,化简得,直线的方程为:,所以点坐标为,点到直线的距离为:,又,因为,所以,因此直角的面积为:,当且仅当时,取等号,所以其面积有最小值,故C正确;对于D:因为,所以,点到直线的距离为:,所以阿基米德三角形的面积为,故D不正确.故选:ABC.三、填空题:本题共3小题,每小题5分,共15分.12.展开式中的常数项为__________.【答案】【解析】由题意的展开式的通项为,令,故展开式中的常数项为,故答案为:6013.已知三棱锥,,,,,则三棱锥的外接球的表面积为_____.【答案】【解析】在中,已知,,,根据余弦定理可得:设外接圆的半径为,根据正弦定理,可得:,则.因为,所以点在平面上的射影是的外心,设三棱锥外接球的球心为,半径为,则平面,且,,.又因为,即,展开可得:,移项化简可得,解得.根据球的表面积公式,可得:.故答案为:.14.若关于的不等式恒成立,则实数的取值范围是_____.【答案】【解析】因为不等式恒成立,可知,,由,可得,则,令,则,当时,,当时,,所以在上单调递减,在上单调递增,当时,,当时,,因为,所以,故只需即可,故,令,求导得,所以当时,,函数在上单调递增,当时,,函数在上单调递减,所以,所以,所以,所以,所以实数的取值范围为.四、解答题:本大题共5个小题,共77分,解答应写出文字说明,证明过程或演算步骤.15.已知a,b,c分别为三个内角A,B,C的对边,且.(1)求;(2)若,求的面积的最大值.解:(1),由正弦定理可得,,..,;(2)(方法一)在中,由余弦定理得,即,当且仅当时取等号..即的面积的最大值为(方法二)由正弦定理得,,则面积.因为,所以,所以,所以当,取得最大值所以即当且仅当时取等号.即的面积的最大值为16.2025年春节假期,文旅市场火爆.文化和旅游部公布的数据显示;春节假期8天,全国国内出游5.01亿人次,同比增长5.9%;国内出游总花费6770.02亿元,同比增长7.0%.某景区的某网红饮品小店统计了春节假期前7天的营业额(单位:千元),得到与的数据如表所示:第天1234567营业额791012161911(1)已知与有较强的线性相关关系,求关于的线性回归方程,并预测春节假期第8天的营业额;(2)如果该天营业额大于10(单位:千元),则该天“达标”,从表格中的7组数据中随机选4组,设表示“达标”的数据组数,求的分布列和数学期望.参考公式:在线性回归方程中,,.解:(1),.,线性回归方程为当时,.即预测春节假期第8天的营业额为千元.(2)由题意可知的所有可能取值为:1,2,3,4.,,,的分布列为1234的数学期望为17.在四棱锥中,底面为直角梯形,,,底面ABCD,,.(1)若为线段的中点,求证:平面.(2)求点到平面的距离;(3)求平面与平面夹角的正弦值.(1)证明:法一:以为原点,,,,分别为x、y、z轴正方向建立空间直角坐标系,则,,,,由为线段的中点,可得,.由题意可得为平面的一个法向量.,且平面,平面法二:取、的中点分别为、,连接、、,为的中位线,,.,,,,,,,,四边形为平行四边形,又面,面平面(2)解:法一:,.设为平面的一个法向量,则,不妨设,则.设点到平面的距离为,则法二:,,底面,,.,设点到平面距离为,则由可得:,解得:(3)解:设平面与平面夹角为,由题意可知,为锐角,即平面与平面夹角的正弦值为.法二:延长,交于点,连接.底面为直角梯形,,,为的中位线..又底面,,为等腰直角三角形,其中.同理可证:.为平面与平面所成二面角的平面角.在中,,,,.即平面与平面夹角的正弦值为.18.已知A,B两点的坐标分别是,,直线,相交于点,且它们的斜率之积是,记点的轨迹为曲线,直线与曲线交于不同的两点M,N.(1)求曲线的方程;(2)若以线段为直径的圆经过点.①求证:直线过定点,并求出的坐标;②求三角形面积最大值.解:(1)设,动点满足直线和直线的斜率乘积为,,即即,.曲线的方程为,且.(2)①设点、,若轴,则且,,,此时,,不合题意.设直线的方程为,联立可得,,由韦达定理可得,,,,因为直线不过点,则,整理可得,解得.直线的方程为,∴直线过定点.②直线的方程为.点到直线的方程为,,令,则,因为时,故当时,取最大值.19.已知函数,其导函数为.(1)讨论的单调性;(2)若恒成立,求实数的取值范围;(3)若,是函数的两个零点,求证:.解:(1)函数的定义域为,.当时,恒成立,在上单调递增;当时,由,解得:;由,解得:.在上单调递减,上单调递增.综上所述:当时,在上单调递增;当时,在上单调递减,上单调递增.(2)要使恒成立,只需恒成立.由(1)可知,当时,在上单调递增,且,∴当时,,不合题意,舍去.当时,在上单调递减,上单调递增,,只需,即在时恒成立.记,,则当时,,单调递增;当时,,单调递

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论