




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湘教版·七年级下册第4章平面内的两条直线4.4平行线的判定第2课时
平行线的判定方法2、3学习目标1.会运用内错角、同旁内角的数量关系判定两条直线平行;(重点)2.会综合运用平行线的判定和性质解题.(难点)复习导入如图所示,直线AB与CD被直线EF所截,因为∠___=∠___,所以
AB∥CD.理由:__________________________.12同位角相等,两直线平行条件结论平行线的判定定理1探究新知问题1
两条直线被第三条直线所截,同时得到同位角、内错角和同旁内角,由同位角相等可以判定两直线平行,那么,能否利用内错角和同旁内角来判定两直线平行呢?如图,直线
AB,CD
被直线
EF
所截,∠2与∠3是内错角.若∠2=∠3,那么
AB与
CD
平行吗?因为∠2=∠3,又因为∠3=∠1(对顶角相等),则∠1=∠2.因此
AB∥CD(同位角相等,两直线平行).next平行线的判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.因为∠3=∠2(已知),所以
AB∥CD(内错角相等,两直线平行).几何语言:知识要点如图,直线
AB,CD
被直线
EF
所截,∠1与∠2是同旁内角.若∠1+∠2=180°,那么
AB
与
CD
平行吗?因为∠1+∠2=180°,又因为∠2+∠3=180°,则∠3=∠1.因此
AB∥CD(同位角相等,两直线平行).next简单说成:同旁内角互补,两直线平行.平行线的判定方法3两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.数学语言:因为∠1+∠2=180°(已知)所以
AB∥CD(同旁内角互补,两直线平行)判定方法1同位角相等,
两直线平行.判定方法2内错角相等,
两直线平行.判定方法3同旁内角互补,两直线平行.条件结论数量关系位置关系判定性质1.如图,一个弯形管道
ABCD
的拐角∠ABC=120°,∠BCD=60°,
这时说管道
AB∥CD对吗?为什么?解:管道
AB∥CD是对的.理由:因为∠ABC=120°,∠BCD=60°,所以∠ABC+∠BCD=180°.所以
AB∥CD(同旁内角互补,两直线平行).随堂演练next①
因为∠2=∠6(已知),
所以___∥___().②
因为∠3=∠5(已知),
所以___∥___().③
因为∠4+___=180°(已知),
所以___∥___().ABCDABCD∠5ABCDAC14235867BD同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行FE2根据条件完成填空:①
因为∠1=_____(已知),
所以
AB∥CE().②
因为∠1+_____=180°(已知),
所以
CD∥BF().③
因为∠1+∠5=180°(已知),
所以____∥____().ABCE∠2④
因为∠4+_____=180°(已知),
所以CE∥AB().∠3∠313542CFEADB内错角相等,两直线平行同旁内角互补,两直线平行同旁内角互补,两直线平行同旁内角互补,两直线平行3.根据条件完成填空:解:因为
AB∥DC,所以∠1=∠2(两直线平行,内错角相等).又因为∠BAD=∠BCD,所以∠BAD-∠1=∠BCD-∠2,即∠3=∠4.所以
AD∥BC(内错角相等,两直线平行).例3
如图,AB∥DC,∠BAD=∠BCD.那么
AD∥BC
吗?典例精析1324ABCDnext解:因为
AD∥BC,所以∠1+∠3=180°(两直线平行,同旁内角互补).又因为∠1=∠2,所以∠2+∠3=180°.所以
AB∥DC(同旁内角互补,两直线平行).例4
如图,∠1=∠2,AD∥BC
,那么
AB∥DC吗?BAC3D12典例精析next教材P110练习1.如图,点
A
在直线
l
上,如果∠B=75°,∠C
=43°.(1)
当∠1=_____时,
直线
l∥
BC;(2)
当∠2=_____时,
直线
l∥
BC.75°43°2.如图,∠ADE=∠DEF,∠EFC+∠C=180°,
试问
AD
与
BC
平行吗?为什么?解:因为∠ADE=∠DEF,所以
AD∥EF(内错角相等,两直线平行).又因为∠EFC+∠C=180°,所以
EF∥BC(同旁内角互补,两直线平行).所以
AD∥BC(平行于同一条直线的两条直线平行).next如图所示,下列条件中不能判定
DE∥BC的是(
)A.∠1=∠CB.∠2=∠3C.∠1=∠2D.∠2+∠4=180°C巩固提高课堂小结1.同位角相等,两直线平行.2.内错角相等,两直线平行.3.同旁内角互补,两直线平行.4.平行于同一直线的两条直线平行.5.平行线的定义.判定两条直线是否平行的方法有:课堂练习1.如图,可以确定
AB∥CE的条件是()A.∠2=∠BB.∠1=∠AC.∠3=∠BD.∠3=∠AC123AEBCD2.如图,已知∠1=30°,∠2或∠3满足条件
,则
a∥b.213abc∠2=150°或∠3=30°3.如图.(1)从∠1=∠4,可以推出
∥
,理由
是
.(2)从∠ABC+∠
=180°,可以推出
AB∥CD,理由是
.ABCD12345AB内错角相等,两直线平行CDBCD同旁内角互补,两直线平行(3)从∠
=∠
,可以推出
AD∥BC,
理由是
.(4)从∠5=∠
,可以推出
AB∥CD,
理由是
.23内错角相等,两直线平行ABC同位角相等,两直线平行ABCD12345理由:因为
AC平分∠DAB(已知),所以∠1=∠2(角平分线的定义).又因为∠1=∠3(已知),所以∠2=∠3(等量代换).所以
AB∥CD(内错角相等,两直线平行).4.如图,已知∠1=∠3,AC平分∠DAB,你能判定
哪两条直线平行?请说明理由?23ABCD))1(解:AB∥CD.next做一做内错角相等,两直线平行.同旁内角互补,两直线平行.做一做同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.1.已知∠3=45°,∠1与∠2互余,试说明:AB//CD.解:因为∠1=∠2(对顶角相等),∠1+∠2=90°(已知),
所以∠1=∠2=45°.
因为∠3=45°(已知),
所以∠2=∠3.
所以
AB∥CD(内错角相等,两直线平行).123ABCD巩固练习next2.如图所示,∠ABC=90°,∠BCD=90°,∠1=∠2,那么
EB∥CF
吗?为什么?解:EB∥CF,理由如下:因为∠ABC=∠BCD=90°,所以∠1+∠3=∠2+∠4=90°.因为∠1=∠2,所以∠3=∠4,所以
EB∥CF(内错角相等,两直线平行).next3.已知:如图,∠ABC=90°,∠1+∠2=90°,∠2=∠3.BE∥DF吗?为什么?解:BE∥DF.理由:因为∠1+∠2=90°,∠2=∠3,所以∠1+∠3=90°又因为∠ABC=90°,所以∠3+∠4=90°所以∠1=∠4所以
BE∥DF(同位角相等,两直线平行).4.如图所示,BE是∠ABD的平分线,DE是∠BDC的平分线,且∠1+∠2=90°,那么直线
AB,CD的位置关系如何?并说明理由.解:AB∥CD.理由如下:因为BE是∠ABD的平分线,
DE是∠BDC的平分线,所以∠ABD=2∠1,∠BDC=2∠2.又因为∠1+∠2=90°,所以∠ABD+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024焊接工程师资格考试的趋势解读试题及答案
- 二零二五版电子商务安全协议书的分析
- 二零二五版国有股权转让协议的税务处理
- 二零二五版国际奢侈品贸易买卖合同书示范文本
- 健身承包协议合同书范例
- 纺织机械操作中的学习交流机会试题及答案
- 2024年质量工程师资格证书考试的重要环节和试题的重要性试题及答案
- 机械工程师考试的职业认知及试题及答案
- 2024年纺织机械考试的重要知识点总结试题及答案
- 二零二五抖音运营合作协议合同范例
- 抗肿瘤药物的常见不良反应及相应对策
- 2025-2030中国射频治疗设备行业市场发展前景及发展趋势与投资风险研究报告
- 统编版语文四年级下册第五单元教材解读解读与集体备课课件
- 砼构件预制件的模具设计与制造技术考核试卷
- 《跨行业并购问题研究的理论基础与文献综述》6300字
- 2025中煤鄂尔多斯能源化工有限公司高校毕业生招聘98人笔试参考题库附带答案详解
- 2025年保密观考试题库及答案
- 导游知识培训课件
- 西师大版小学五年级数学(下)期中测试题(1-4单元)(2)(含答案)
- 用户思维在产品创新中的应用案例
- 2025《四川省建设工程施工总包合同》示范文本
评论
0/150
提交评论