自动控制原理课件 Chapter 9 Stability in theFrequency Domain学习资料_第1页
自动控制原理课件 Chapter 9 Stability in theFrequency Domain学习资料_第2页
自动控制原理课件 Chapter 9 Stability in theFrequency Domain学习资料_第3页
自动控制原理课件 Chapter 9 Stability in theFrequency Domain学习资料_第4页
自动控制原理课件 Chapter 9 Stability in theFrequency Domain学习资料_第5页
已阅读5页,还剩96页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter9

StabilityintheFrequencyDomainIntroductionTheNyquistCriterionRelativeStabilityandtheNyquistCriterionTime-DomainPerformanceCriteriaintheFrequencyDomainStabilityintheFrequencyDomainUsingControlDesignSoftwareSequentialDesignExample:DiskDriveReadSystem9.1IntroductionVarioustoolstodeterminethestability(relativestability)Routh-HurwitzstabilitycriterionRootlocusmethodFrequencydomainmethod—NyquiststabilitycriterionItinvestigatesthestabilityofasystemintherealfrequencydomainItcanbeutilizedtoinvestigatetherelativestabilityofasystemwhenthesystemparametervalueshavenotbeendetermined.Itwouldbeusefulfordeterminingsuitableapproachestoadjustingtheparametersofasysteminordertoincreaseitsrelativestability.9.1IntroductionTodeterminetherelativestabilityofaclosed-loopsystem,wemustinvestigatethecharacteristicequationofthesystem:

(9.1)Toensurestability,wemustascertainthatallthezerosofF(s)lieintheleft-hands-plane.Nyquistthusproposedamappingoftheright-hands-planeintotheF(s)-plane.TouseandunderstandNyquist'scriterion,weshallfirstconsiderbrieflythemappingofcontoursortrajectoriesinthecomplexplaneintoanotherplanebyarelation

functionF(s).

9.2MappingContoursinthes-planeAcontourmap:s-plane—F(s)=u+jv-planeExample:F(s)=2s+1S-plane,s=σ+jω;F(s)-plane:F(s)=u+jv=2(σ+jω)+1 u=2σ+1,v=2ωUnitsquarecontourSquarecontourwiththecentershiftedbyoneunitandthemagnitudeofasidemultipliedby2.Conformalmappingtheanglesofthes-planecontourandF(s)-planecontouristhesametheclosedcontourinthes-planeresultsinaclosedcontourintheF(s)-planedirectionofcontoursassumeclockwisetraversalofacontourtobepositivetheareaenclosedwithinthecontourtobeontherightofthetraversalofthecontourExample:F(s)=s/(s+2)Anotherexample:F(s)=s/(s+1/2)Cauchy’stheorem-principleoftheargumentMappingofthefunctionwithafinitenumberofpolesandzeroswithinthecontourCauchy’stheorem:IfacontourΓs

inthes-planeencirclesZzerosandPpolesofF(s)anddoesnotpassthroughanypolesandzerosofF(s)andthetraversalisintheclockwisedirectionalongthecontour,thecorrespondingcontourΓF

intheF(s)-planeencirclestheoriginoftheF(s)-planeN=Z-Ptimesintheclockwisedirection.78OtherpatternsoftheuseofCauchy’stheoremOpenlooptransferfunctionClosed-looptransferfunction+-10LetUsuallyareopenpolesThusZeorsofassistantfunctionequalstothepolesofclosed-loopsystemPolesofassistantfunctionequalstothepolesofopen-loopsystem119.3TheNyquistcriterionConsiderthecharacteristicequationF(s)=0Forasystemtobestable,allthezerosofF(s)mustlieintheleft-hands-plane,thatistheleftofthejω-axisinthes-planeInthes-plane,chooseaspecialcontourΓs

thatenclosestheentireright-hands-planeIntheF(s)-plane,examineN,i.e.,ΓF

’sencirclementnumberoftheorigin.AccordingtoN=Z-P,determinewhetheranyzerosofF(s)liewithinΓs.Wewillget

Z=N+PPisthenumberofpolesofF(s)intheright-hands-plane.Thus,ifP=0,asisusuallythecase,wefindthatthenumberofunstablerootsofthesystemisequaltoN,thenumberofencirclementsoftheoriginoftheF(s)-plane.IfZ>0,unstable.IfZ=0,stable.TheNyquistcontourthatenclosestheentireright-hands-planeisshownintheFigure.ThecontourΓspassesalongthejω-axisfrom–j∞to+j∞.Thecontouriscompletedbyasemicircularpathofradiusr,whererapproachesinfinitysothispartofthecontourtypicallymapstoapoint.ThiscontourΓFisknownastheNyquistdiagramorpolarplot.HowtoknowNaccordingtoGH(jω)?Mappingofthecharacteristicequation

F(s)=1+GH(s)FunctionGH(s)=F(s)-1ConstructΓGH(s)correspondingtotheselectedΓsjω:0→∞,G(jω),frequencyresponsecharacteristicjω:-∞→0,besymmetricaltotheaboveThecircle:originThenumberofclockwiseencirclementsoftheoriginoftheF(s)-planebecomesthenumberofclockwiseencirclementofthe(–1,j0)pointintheGH(s)-plane.Nyquiststabilitycriterion:Afeedbackcontrolsystemisstableifandonlyif,inthecontourΓGH,thenumberofcounterclockwiseencirclementsofthe(-1,j0)isequaltothenumberofpolesofGH(s)withpositiverealparts.Z=N+P=0SpecialconditionP=0AfeedbacksystemisstableifandonlyifthecontourΓGHintheGH(s)-planedoesnotencirclethe(-1,j0)pointwhenthenumberofpolesGH(s)intheright-hands-planeiszero.(P=0)Z=N=0Example9.1systemwithtworealpolesExample9.2SystemwithapoleattheoriginContourΓscannotpassthroughanypolesorzerosofF(s).ThusselecttheaboveΓsinthes-plane.ConstructthecontoursΓGH---4portions(1)Theoriginofthes-plane.Thesmallsemicirculardetouraroundthepoleattheorigincanberepresentedbysettings=εejϕ

andallowingϕ

tovaryfrom-90°atω=0-to+90°atω=0+.Becauseεapproacheszero,themappingforGH(s)istheangleofthecontourintheL(s)-planechangesfrom90°atω=0-to-90°atω=0+,passingthrough0°atω=0.TheradiusofthecontourintheL(s)-planeforthisportionofthecontourisinfinite.(2)Theportionfromω=0+toω=+∞Themagnitudeapproachesto0atanangleof-180°(3)Theportionfromω=+∞toω=-∞

Thecontourmovesfromanangleof-180°atω=+∞toanangleof+180°atω=-∞.Themagnitudeofthecontourwhenrisinfiniteisalwayszerooraconstant.(4)Theportionfromω=-∞toω=0-

StabilityP=0:Numberofpolesintheright-hands-planeiszero.N=0:ContourΓGHdonotencirclethe(-1,j0)pointintheGH-plane.Z=N+P=0.Thesystemisstable.Thegeneralconclusionfromthisexample:Thecontourfortherange-∞<ω<0—willbethecomplexconjugateoftheplotfromtherange0+<ω<+∞.ThereforeitissufficienttoconstructthecontourΓGHfrom0+<ω<+∞.ThemagnitudeofGH(s)ass=rejΦandr→∞willnormallyapproachzerooraconstant.Example9.3

SystemwiththreepolesThepointpassingthroughtheimaginarypartis,GH(s)=u+jv,v=0.,and ,therealpartThenthesystemisstablewhenwhenExample9.4SystemwithtwopolesattheoriginZ=2,UnstablesystemTherealfrequencypolarplotisobtainedwhens=jωtheangleofL(jω)isalways-180°orless,andthelocusofL(jω)isabovetheω-axisforallvaluesofω.As

ω

approaches0+,As

ωapproaches+∞,Atthesmallsemicirculardetourattheoriginofthes-planewheres=εejϕExample9.5Systemwithapoleintheright-hands-planeP=1,N=1,Z=2,unstablesystemExample9.6Example9.7Systemwithazerointheright-hands-plane9.4RelativestabilityandtheNyquistcriterionMeasuretherelativestabilityRelativesettlingtimeofeachrootorpairofroots.Shortersettlingtimemeansmorerelativelystable.(chapter6)TheNyquiststabilitycriterionisdefinedintermsofthe(-1,0)pointonthepolarplotorthe0dB,-180°pointontheBodediagramorlog-magnitude-phasediagram.

StabilityMargins

DefinitionsofStabilityMarginsCalculationsofStabilityMargins31

StabilityMarginsTimedomain(t)ThedynamicalperformanceStableboundaryFrequencydomain(w)HowstablethesystemisImaginaryaxisDampedratio

xThedistanceto(-1,j0)(-1,j0)Stabilitymargins(Open-loopfrequencyindices)Howstableitis32

StabilityMargins§

TheDefinitionofStabilityMargins

ThegeometrymeaningofCutofffrequency

wcPhasemarginGainmarginThestabilitydepthontheGainPhaseGenerallyThephysicsmeaningofPhasecrossoverfrequency33DemonstrationexampleMarginalsituation:GainmarginandphasemargininBodeplot:Clearly,thefeedbacksystemL2(jω)isrelativelylessstablethanthesystemL1(jω).

§StabilityMargins§CalculationsofStabilityMargins

SolutionI:ObtaingandhbytheNyquistplot,obtain(1)LetT.&E.37

§StabilityMarginsLetWehave38

§StabilityMarginsRewriteG(jw)

intotherealpartplustheimaginarypartLetWehaveSubstitutetotheRP39

§StabilityMarginsFromL(w):WehaveSolutionII:DeterminebyBodediagram40

§StabilityMarginsSolution.Determineby

L(w)SolutionI:,DetermineSolutionII:41

ObtainwgRewrittenasWehave42

SummaryConcept(Open-loopfrequencyindex)Definitions

CalculationsCutofffrequencywc

PhasemargingPhasecrossoverfrequencywg

Amplitudemargins

hMeaningsThegeometrymeaningofThephysicalmeaningof43

SystemAnalysisbyFrequencyResponseCharacteristicsofOpen-LoopSystems

CorrelationbetweenL(ω)LowFrequencySectionandSteadyStateErrorsCorrelationbetweenL(ω)MidFrequencySectionandDynamicPerformancesImpactsofL(ω)HighFrequencySectiononSystemPerformances44

AnalysisbyFrequencyResponseofO.L.SystemsTri-BandinFrequency

1.Lowerfrequencybandof

L(w)

⇔ess2.Middlefrequencybandof

L(w)⇔(s,ts)3.Higherfrequencybandof

L(w)⇔Theabilityofanti-high-frequencynoise

Thecorrelationbetweentheslopeof

L(w)and

j(w)ofminimumphasesystemsIdeally,L(w)crossesthe0dBlinewithaslopeof-20dB/decandretainsabroadband45

Bodediagramforthesystem46

Determinetheshapeof

j(w)Thecorrelationbetweenj(w)andL(w)(k=1)ofminimumphasesystem.§AnalysisbyFrequencyResponseofO.L.Systems47

Thecorrelationbetweenj(w)andL(w).(k=1)ofminimumphasesystems§AnalysisbyFrequencyResponseofO.L.Systems48

(1)Second-ordersystem

§AnalysisbyFrequencyResponseofO.L.Systems49

§AnalysisbyFrequencyResponseofO.L.Systems50

Considerthesystemshowninthefigure.Obtainthe

wc,s

and

ts.Solution.Sketch

L(w)RefertoFigTimedomainmethod:§AnalysisbyFrequencyResponseofO.L.Systems51

(2)Higher-ordersystem§5AnalysisbyFrequencyResponseofO.L.Systems52

Solution.Sketch

L(w)RefertoFig.

Obtain

wc,g,s

and

ts

fortheunityfeedbacksystem.§AnalysisbyFrequencyResponseofO.L.Systems53

Estimatethedynamicperformanceofhigher-ordersystembyfrequencyresponsemethod.§AnalysisbyFrequencyResponseofO.L.Systems54

TheminimumphasesystemL(w)isshowninthefigure,(1)Obtaintheopen-looptransferfunctionG(s)(2)determinethestabilitybyg(3)DeterminetheeffectofshiftingL(w)totherightby1dec.Solution.(1)(3)AftershiftingL(w)totherightby1dec(2)wc

increased→ts

decreasedAftershiftingnochange→s

nochangeStable55

MiddlebandTri-BandinFrequencyHigherbandLowerbandCorrespondingperformanceExpectation

L(w)Theabilityofanti-high-frequencynoiseOpen-loopgainKSystemtypevessCutofffrequencywc

PhasemargingDynamicPerformanceSteep,HighModerate,WideLow,SteepFrequencyBandTri-Banddoesnotgivethestepstodesignsystems,butitshowthewaytoadjustthesystemstructureforbetterperformance.§AnalysisbyFrequencyResponseofO.L.Systems56§NicholsChart§SystemAnalysisbyFrequencyResponseCharacteristicsofClosed-LoopSystems

57

§NicholsChartWhyClosed-Loopfrequencyresponses(1)Indicesofclosed-loopfrequencycharacteristicsareusedwidelyinpractice;(2)Theclosed-loopfrequencycharacteristicssystemareeasilyobtainedbyexperimentalmethod;(3)Thesystemperformancespecificationscanbeestimatedbytheclosed-loopfrequencyindices.58

VectorCorrelationbetweenOLandCLFrequencyResponses59

ConstantM/NcirclesConstantMcircle—AlocuscorrespondingtoaconstantLet

Rewrite:—ConstantMcirclesequation60

Let

Rewrite:—ConstantNcirclesequationConstantNcircle—Alocuscorrespondingtoaconstant61

ConstantM/Ncircles→Nicholschart62§5.7闭环频率特性曲线的绘制(6)

Determine63Example9.7 StabilityusingtheNicholschartφωB

=-142°Mpω=+2.5dBωr=0.8φωr=-72°ωB

=1.339.6SystemBandwidthThebandwidthoftheclosed-loopsystemisanexcellentmeasurementoftherangeoffidelityofthesystem.ThespeedoftheresponsetoastepinputwillberoughlyproportionaltoωB,thusweseekalargebandwidthconsistentwithreasonablesystemcomponents.ThesystemsThesystemsBothsystemshaveζ=0.5.Thenaturalfrequencyis10and30forsystemsT3andT4,respectively.Thebandwidthis12.7and38.1forsystemsT3andT4,respectively.Bothsystemshavea16%overshoot,butT4hasapeaktimeof0.12secondcomparedto0.36forT3.Also,notethatthesettlingtimeforT4is0.27second,whilethesettlingtimeforT3is0.8second.Thesystemwithalargerbandwidthprovidesafasterresponse.9.8Designexample:RemotelycontrolledreconnaissancevehicleTheremotecontrolledvehicleThedesigngoal:goodoverallcontrolwithlowsteady-stateerrorandlow-overshootresponsetostepinputcommand,R(s)First,lowsteady-stateerrorWemayselectK=20,thusthetransferfunctionofopen-loopsystemis9.8Designexample:RemotelycontrolledreconnaissancevehicleK=20,20logMpω=12dBandMpω=3.98.Thephasemarginis15°.Wepredictanexcessiveovershootofapproximate61%.Toreducetheovershoottoastepinput,reducethegain.Tolimittheovershoot25%,ζ=0.4,thusrequireMpω=1.35and20lo

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论