




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter9
StabilityintheFrequencyDomainIntroductionTheNyquistCriterionRelativeStabilityandtheNyquistCriterionTime-DomainPerformanceCriteriaintheFrequencyDomainStabilityintheFrequencyDomainUsingControlDesignSoftwareSequentialDesignExample:DiskDriveReadSystem9.1IntroductionVarioustoolstodeterminethestability(relativestability)Routh-HurwitzstabilitycriterionRootlocusmethodFrequencydomainmethod—NyquiststabilitycriterionItinvestigatesthestabilityofasystemintherealfrequencydomainItcanbeutilizedtoinvestigatetherelativestabilityofasystemwhenthesystemparametervalueshavenotbeendetermined.Itwouldbeusefulfordeterminingsuitableapproachestoadjustingtheparametersofasysteminordertoincreaseitsrelativestability.9.1IntroductionTodeterminetherelativestabilityofaclosed-loopsystem,wemustinvestigatethecharacteristicequationofthesystem:
(9.1)Toensurestability,wemustascertainthatallthezerosofF(s)lieintheleft-hands-plane.Nyquistthusproposedamappingoftheright-hands-planeintotheF(s)-plane.TouseandunderstandNyquist'scriterion,weshallfirstconsiderbrieflythemappingofcontoursortrajectoriesinthecomplexplaneintoanotherplanebyarelation
functionF(s).
9.2MappingContoursinthes-planeAcontourmap:s-plane—F(s)=u+jv-planeExample:F(s)=2s+1S-plane,s=σ+jω;F(s)-plane:F(s)=u+jv=2(σ+jω)+1 u=2σ+1,v=2ωUnitsquarecontourSquarecontourwiththecentershiftedbyoneunitandthemagnitudeofasidemultipliedby2.Conformalmappingtheanglesofthes-planecontourandF(s)-planecontouristhesametheclosedcontourinthes-planeresultsinaclosedcontourintheF(s)-planedirectionofcontoursassumeclockwisetraversalofacontourtobepositivetheareaenclosedwithinthecontourtobeontherightofthetraversalofthecontourExample:F(s)=s/(s+2)Anotherexample:F(s)=s/(s+1/2)Cauchy’stheorem-principleoftheargumentMappingofthefunctionwithafinitenumberofpolesandzeroswithinthecontourCauchy’stheorem:IfacontourΓs
inthes-planeencirclesZzerosandPpolesofF(s)anddoesnotpassthroughanypolesandzerosofF(s)andthetraversalisintheclockwisedirectionalongthecontour,thecorrespondingcontourΓF
intheF(s)-planeencirclestheoriginoftheF(s)-planeN=Z-Ptimesintheclockwisedirection.78OtherpatternsoftheuseofCauchy’stheoremOpenlooptransferfunctionClosed-looptransferfunction+-10LetUsuallyareopenpolesThusZeorsofassistantfunctionequalstothepolesofclosed-loopsystemPolesofassistantfunctionequalstothepolesofopen-loopsystem119.3TheNyquistcriterionConsiderthecharacteristicequationF(s)=0Forasystemtobestable,allthezerosofF(s)mustlieintheleft-hands-plane,thatistheleftofthejω-axisinthes-planeInthes-plane,chooseaspecialcontourΓs
thatenclosestheentireright-hands-planeIntheF(s)-plane,examineN,i.e.,ΓF
’sencirclementnumberoftheorigin.AccordingtoN=Z-P,determinewhetheranyzerosofF(s)liewithinΓs.Wewillget
Z=N+PPisthenumberofpolesofF(s)intheright-hands-plane.Thus,ifP=0,asisusuallythecase,wefindthatthenumberofunstablerootsofthesystemisequaltoN,thenumberofencirclementsoftheoriginoftheF(s)-plane.IfZ>0,unstable.IfZ=0,stable.TheNyquistcontourthatenclosestheentireright-hands-planeisshownintheFigure.ThecontourΓspassesalongthejω-axisfrom–j∞to+j∞.Thecontouriscompletedbyasemicircularpathofradiusr,whererapproachesinfinitysothispartofthecontourtypicallymapstoapoint.ThiscontourΓFisknownastheNyquistdiagramorpolarplot.HowtoknowNaccordingtoGH(jω)?Mappingofthecharacteristicequation
F(s)=1+GH(s)FunctionGH(s)=F(s)-1ConstructΓGH(s)correspondingtotheselectedΓsjω:0→∞,G(jω),frequencyresponsecharacteristicjω:-∞→0,besymmetricaltotheaboveThecircle:originThenumberofclockwiseencirclementsoftheoriginoftheF(s)-planebecomesthenumberofclockwiseencirclementofthe(–1,j0)pointintheGH(s)-plane.Nyquiststabilitycriterion:Afeedbackcontrolsystemisstableifandonlyif,inthecontourΓGH,thenumberofcounterclockwiseencirclementsofthe(-1,j0)isequaltothenumberofpolesofGH(s)withpositiverealparts.Z=N+P=0SpecialconditionP=0AfeedbacksystemisstableifandonlyifthecontourΓGHintheGH(s)-planedoesnotencirclethe(-1,j0)pointwhenthenumberofpolesGH(s)intheright-hands-planeiszero.(P=0)Z=N=0Example9.1systemwithtworealpolesExample9.2SystemwithapoleattheoriginContourΓscannotpassthroughanypolesorzerosofF(s).ThusselecttheaboveΓsinthes-plane.ConstructthecontoursΓGH---4portions(1)Theoriginofthes-plane.Thesmallsemicirculardetouraroundthepoleattheorigincanberepresentedbysettings=εejϕ
andallowingϕ
tovaryfrom-90°atω=0-to+90°atω=0+.Becauseεapproacheszero,themappingforGH(s)istheangleofthecontourintheL(s)-planechangesfrom90°atω=0-to-90°atω=0+,passingthrough0°atω=0.TheradiusofthecontourintheL(s)-planeforthisportionofthecontourisinfinite.(2)Theportionfromω=0+toω=+∞Themagnitudeapproachesto0atanangleof-180°(3)Theportionfromω=+∞toω=-∞
Thecontourmovesfromanangleof-180°atω=+∞toanangleof+180°atω=-∞.Themagnitudeofthecontourwhenrisinfiniteisalwayszerooraconstant.(4)Theportionfromω=-∞toω=0-
StabilityP=0:Numberofpolesintheright-hands-planeiszero.N=0:ContourΓGHdonotencirclethe(-1,j0)pointintheGH-plane.Z=N+P=0.Thesystemisstable.Thegeneralconclusionfromthisexample:Thecontourfortherange-∞<ω<0—willbethecomplexconjugateoftheplotfromtherange0+<ω<+∞.ThereforeitissufficienttoconstructthecontourΓGHfrom0+<ω<+∞.ThemagnitudeofGH(s)ass=rejΦandr→∞willnormallyapproachzerooraconstant.Example9.3
SystemwiththreepolesThepointpassingthroughtheimaginarypartis,GH(s)=u+jv,v=0.,and ,therealpartThenthesystemisstablewhenwhenExample9.4SystemwithtwopolesattheoriginZ=2,UnstablesystemTherealfrequencypolarplotisobtainedwhens=jωtheangleofL(jω)isalways-180°orless,andthelocusofL(jω)isabovetheω-axisforallvaluesofω.As
ω
approaches0+,As
ωapproaches+∞,Atthesmallsemicirculardetourattheoriginofthes-planewheres=εejϕExample9.5Systemwithapoleintheright-hands-planeP=1,N=1,Z=2,unstablesystemExample9.6Example9.7Systemwithazerointheright-hands-plane9.4RelativestabilityandtheNyquistcriterionMeasuretherelativestabilityRelativesettlingtimeofeachrootorpairofroots.Shortersettlingtimemeansmorerelativelystable.(chapter6)TheNyquiststabilitycriterionisdefinedintermsofthe(-1,0)pointonthepolarplotorthe0dB,-180°pointontheBodediagramorlog-magnitude-phasediagram.
StabilityMargins
DefinitionsofStabilityMarginsCalculationsofStabilityMargins31
StabilityMarginsTimedomain(t)ThedynamicalperformanceStableboundaryFrequencydomain(w)HowstablethesystemisImaginaryaxisDampedratio
xThedistanceto(-1,j0)(-1,j0)Stabilitymargins(Open-loopfrequencyindices)Howstableitis32
StabilityMargins§
TheDefinitionofStabilityMargins
ThegeometrymeaningofCutofffrequency
wcPhasemarginGainmarginThestabilitydepthontheGainPhaseGenerallyThephysicsmeaningofPhasecrossoverfrequency33DemonstrationexampleMarginalsituation:GainmarginandphasemargininBodeplot:Clearly,thefeedbacksystemL2(jω)isrelativelylessstablethanthesystemL1(jω).
§StabilityMargins§CalculationsofStabilityMargins
SolutionI:ObtaingandhbytheNyquistplot,obtain(1)LetT.&E.37
§StabilityMarginsLetWehave38
§StabilityMarginsRewriteG(jw)
intotherealpartplustheimaginarypartLetWehaveSubstitutetotheRP39
§StabilityMarginsFromL(w):WehaveSolutionII:DeterminebyBodediagram40
§StabilityMarginsSolution.Determineby
L(w)SolutionI:,DetermineSolutionII:41
ObtainwgRewrittenasWehave42
SummaryConcept(Open-loopfrequencyindex)Definitions
CalculationsCutofffrequencywc
PhasemargingPhasecrossoverfrequencywg
Amplitudemargins
hMeaningsThegeometrymeaningofThephysicalmeaningof43
SystemAnalysisbyFrequencyResponseCharacteristicsofOpen-LoopSystems
CorrelationbetweenL(ω)LowFrequencySectionandSteadyStateErrorsCorrelationbetweenL(ω)MidFrequencySectionandDynamicPerformancesImpactsofL(ω)HighFrequencySectiononSystemPerformances44
AnalysisbyFrequencyResponseofO.L.SystemsTri-BandinFrequency
1.Lowerfrequencybandof
L(w)
⇔ess2.Middlefrequencybandof
L(w)⇔(s,ts)3.Higherfrequencybandof
L(w)⇔Theabilityofanti-high-frequencynoise
Thecorrelationbetweentheslopeof
L(w)and
j(w)ofminimumphasesystemsIdeally,L(w)crossesthe0dBlinewithaslopeof-20dB/decandretainsabroadband45
Bodediagramforthesystem46
Determinetheshapeof
j(w)Thecorrelationbetweenj(w)andL(w)(k=1)ofminimumphasesystem.§AnalysisbyFrequencyResponseofO.L.Systems47
Thecorrelationbetweenj(w)andL(w).(k=1)ofminimumphasesystems§AnalysisbyFrequencyResponseofO.L.Systems48
(1)Second-ordersystem
§AnalysisbyFrequencyResponseofO.L.Systems49
§AnalysisbyFrequencyResponseofO.L.Systems50
Considerthesystemshowninthefigure.Obtainthe
wc,s
and
ts.Solution.Sketch
L(w)RefertoFigTimedomainmethod:§AnalysisbyFrequencyResponseofO.L.Systems51
(2)Higher-ordersystem§5AnalysisbyFrequencyResponseofO.L.Systems52
Solution.Sketch
L(w)RefertoFig.
Obtain
wc,g,s
and
ts
fortheunityfeedbacksystem.§AnalysisbyFrequencyResponseofO.L.Systems53
Estimatethedynamicperformanceofhigher-ordersystembyfrequencyresponsemethod.§AnalysisbyFrequencyResponseofO.L.Systems54
TheminimumphasesystemL(w)isshowninthefigure,(1)Obtaintheopen-looptransferfunctionG(s)(2)determinethestabilitybyg(3)DeterminetheeffectofshiftingL(w)totherightby1dec.Solution.(1)(3)AftershiftingL(w)totherightby1dec(2)wc
increased→ts
decreasedAftershiftingnochange→s
nochangeStable55
MiddlebandTri-BandinFrequencyHigherbandLowerbandCorrespondingperformanceExpectation
L(w)Theabilityofanti-high-frequencynoiseOpen-loopgainKSystemtypevessCutofffrequencywc
PhasemargingDynamicPerformanceSteep,HighModerate,WideLow,SteepFrequencyBandTri-Banddoesnotgivethestepstodesignsystems,butitshowthewaytoadjustthesystemstructureforbetterperformance.§AnalysisbyFrequencyResponseofO.L.Systems56§NicholsChart§SystemAnalysisbyFrequencyResponseCharacteristicsofClosed-LoopSystems
57
§NicholsChartWhyClosed-Loopfrequencyresponses(1)Indicesofclosed-loopfrequencycharacteristicsareusedwidelyinpractice;(2)Theclosed-loopfrequencycharacteristicssystemareeasilyobtainedbyexperimentalmethod;(3)Thesystemperformancespecificationscanbeestimatedbytheclosed-loopfrequencyindices.58
VectorCorrelationbetweenOLandCLFrequencyResponses59
ConstantM/NcirclesConstantMcircle—AlocuscorrespondingtoaconstantLet
Rewrite:—ConstantMcirclesequation60
Let
Rewrite:—ConstantNcirclesequationConstantNcircle—Alocuscorrespondingtoaconstant61
ConstantM/Ncircles→Nicholschart62§5.7闭环频率特性曲线的绘制(6)
Determine63Example9.7 StabilityusingtheNicholschartφωB
=-142°Mpω=+2.5dBωr=0.8φωr=-72°ωB
=1.339.6SystemBandwidthThebandwidthoftheclosed-loopsystemisanexcellentmeasurementoftherangeoffidelityofthesystem.ThespeedoftheresponsetoastepinputwillberoughlyproportionaltoωB,thusweseekalargebandwidthconsistentwithreasonablesystemcomponents.ThesystemsThesystemsBothsystemshaveζ=0.5.Thenaturalfrequencyis10and30forsystemsT3andT4,respectively.Thebandwidthis12.7and38.1forsystemsT3andT4,respectively.Bothsystemshavea16%overshoot,butT4hasapeaktimeof0.12secondcomparedto0.36forT3.Also,notethatthesettlingtimeforT4is0.27second,whilethesettlingtimeforT3is0.8second.Thesystemwithalargerbandwidthprovidesafasterresponse.9.8Designexample:RemotelycontrolledreconnaissancevehicleTheremotecontrolledvehicleThedesigngoal:goodoverallcontrolwithlowsteady-stateerrorandlow-overshootresponsetostepinputcommand,R(s)First,lowsteady-stateerrorWemayselectK=20,thusthetransferfunctionofopen-loopsystemis9.8Designexample:RemotelycontrolledreconnaissancevehicleK=20,20logMpω=12dBandMpω=3.98.Thephasemarginis15°.Wepredictanexcessiveovershootofapproximate61%.Toreducetheovershoottoastepinput,reducethegain.Tolimittheovershoot25%,ζ=0.4,thusrequireMpω=1.35and20lo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 今天山西高考语文作文
- 5-7MSI同步计数器2-74161实现模长小于16任意进制计数器
- 湖北省部分重点中学2023~2024学年高二数学下学期五月联考试卷含答案
- 上海闵行区2025届高三高考化学试题系列模拟卷(4)含解析
- 吉林省松原市扶余第一中学2025届高三下学期第二次阶段考试数学试题含解析
- 山西医科大学晋祠学院《中西医临床诊疗技术》2023-2024学年第一学期期末试卷
- 吉林省长春市第151中学2025届高三下学期线上周语文试题含解析
- 泉州医学高等专科学校《软件项目》2023-2024学年第二学期期末试卷
- 上海市华师大二附中2025届高三下学期第二次诊断性测验生物试题试卷含解析
- 南通大学《DSP原理与应用》2023-2024学年第二学期期末试卷
- 2025初级粮油仓储管理员职业技能精练考试题库及答案(浓缩300题)
- 天津市南大数安(天津)科技有限公司招聘笔试题库2025
- 虚拟资产安全管理制度
- 2025年高考地理二轮复习:综合题答题技巧(含练习题及答案)
- 保险基础知识教学课件
- 2025年中考英语三轮复习之选词填空
- 护理科研课程分享
- 2025 届高三部分重点中学3月联合测评(T8联考)英语试题答案
- 2025陕煤集团榆林化学有限责任公司招聘(137人)笔试参考题库附带答案详解
- 衢州2025年浙江衢州龙游县综合事业单位招聘43人笔试历年参考题库附带答案详解
- 测绘成果质量管理制度(一)
评论
0/150
提交评论