自动控制原理课件 Chapter 8 Frequency ResponseMethod学习资料_第1页
自动控制原理课件 Chapter 8 Frequency ResponseMethod学习资料_第2页
自动控制原理课件 Chapter 8 Frequency ResponseMethod学习资料_第3页
自动控制原理课件 Chapter 8 Frequency ResponseMethod学习资料_第4页
自动控制原理课件 Chapter 8 Frequency ResponseMethod学习资料_第5页
已阅读5页,还剩92页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter8

FrequencyResponseMethodCurriculumSystemSystemmodelingPerformanceissuesanalysiscorrectionTimedomainComplexdomainFrequencydomain8.1IntroductionLinearconstantcoefficientsystemsInputsignal:sinusoidal(frequency,magnitude,andphase)Keyconcepts:(8.1)FrequencyresponseFrequencycharacteristicRepresentationoffrequencycharacteristic(howtogetthem?)Polarplot(8.2)Bodeplot(8.2,8.3)Logmagnitudeandphasediagram(8.6)ApplicationsDeterminethesteady-stateresponsetoasinusoidalinput(8.1)Determinethetransferfunctionbyexperiment(8.4)Analyzeperformancespecificationinthefrequencydomain(8.5)Stabilityanalysis(chapter9)andDesign(chapter10)

Featuresoffrequencydomainanalysismethod⑴Thismethodstudieshowthemagnitudeandphaseofsinusoidalsteady-statevarywiththefrequency⑵Studiesthe

stabilityandperformanceoftheclosed-loopsystembytheopen-loopfrequencycharacteristics⑶Agraphicanalysismethod

⑷Anapproximatemethod8.1Introduction48.1IntroductionThefrequencyresponseofasystemisdefinedasthesteady-stateresponseofthesystemtoasinusoidalinputsignal.

Theresultingoutputsignalforalinearsystem,aswellassignalsthroughoutthesystem,issinusoidalwiththesamefrequencyasinputsinusoidalinthesteadystate;

Itdiffersfromtheinputwaveformonlyinamplitudeandphaseangle,andtheamountofdifferenceisafunctionoftheinputfrequency.Thesteady-stateoutputsignaldependsonlyonthemagnitudeandphaseofT(jω)ataspecificfrequency

ωs.

Y(s)=T(s)R(s)withr(t)=Asinωt.whereareassumedtobedistinctpoles.Theninpartialfractionformwehavewhereaandβ

areconstantswhichareproblemdependent.TakingtheinverseLaplacetransformyieldsDemonstrationexampleStaticoutputofthesystem

Parametersband

canbeobtainedby7

T(jω)canberepresentedby

8Oneadvantageofthefrequencyresponsemethodisthatexperimentaldeterminationofthefrequencyresponseofasystemiseasilyaccomplishedandisthemostreliableanduncomplicatedmethodfortheexperimentalanalysisofasystem.Furthermore,thedesignofasysteminthefrequencydomainprovidesthedesignerwithcontrolofthebandwidthofasystem,aswellassomemeasureoftheresponseofthesystemtoundesirednoiseanddisturbances.Asecondadvantageisthatthetransferfunctiondescribingthesinusoidalsteady-statebehaviorofasystemcanbeobtainedbyreplacingswithjωinthesystemtransferfunctionT(s)(calledasfrequencycharacteristic).Thebasicdisadvantageofthefrequencyresponsemethodforanalysisanddesignistheindirectlinkbetweenthefrequencyandthetimedomain.

ConceptofFrequency-ResponseCharacteristics

ConsidertheRCcircuitshowninthefigure(ur(t)=Asinwt).Obtainuc(t).Modeling10

DefinitionofFrequency-ResponseCharacteristicDefinition1Definition3Definition2Magnitude-FrequencyCharacteristic

Phase-Frequency

Characteristic

ConceptofFrequency-ResponseCharacteristics

11

Considerthesystemshowninthefigure(r(t)=3sin(2t+30º)).Obtaincs(t),es(t).Solution.ConceptofFrequency-ResponseCharacteristics

12

Frequency-ResponseCharacteristicsinGraphicalFormsⅠ.Frequencycharacteristic

Ⅱ.Magnitudeandphasecharacteristic

(Nyquist)Ⅲ.Log-magnitude-frequencycharacteristic

(Bode)Ⅳ.Log-phase-frequencycharacteristic

(Nichols)Magnitude-FrequencyPhase-FrequencyLog-magnitude-frequencyLog-phase-frequencyForConceptofFrequency-ResponseCharacteristics

13

CorrelationbetweenMathematicalmodelsConceptofFrequency-ResponseCharacteristics

14

Themagnitude-phasecurveforFirst-OrderfactorsMagnitude-PhaseFrequencyCharacteristics15

Magnitude-phasecharacteristicsoftypicalfactorsProve:Theamplitude-phasecharacteristicsoffirst-orderfactorsareasemicircle.

(Lowerhalfofthecircle)Magnitude-PhaseFrequencyCharacteristics16

Magnitude-phasecharacteristicsFromtheshapeofthecurve,weknowthatFromthestartingpoint:Fromj0From

j1:Obtainthetransferfunctionfromthemagnitude-phasecharacteristicsshowninthefigure.Magnitude-PhaseFrequencyCharacteristics17

UnstableFirst-OrderFactors⑸ReciprocalFirst-OrderFactorsMagnitude-PhaseFrequencyCharacteristics18Example8.2PolarplotoftransferfunctionThefrequencycharacteristicisThemagnitudeandphaseangleare8.2FrequencyResponsePlotsUsetherealandimaginarypartsofG(jω)as8.2FrequencyResponsePlots

§Magnitude-PhaseFrequencyCharacteristics(Nyquist)§Magnitude-PhaseFrequencyCharacteristicsofTypicalFactors⑴Thegain⑵Derivativefactor⑶Integralfactor⑷First-orderfactor21AmplitudeandPhaseFrequency⑹OscillationlinkAmplitudeandPhaseFrequencyCharacteristicsofTypicalLink22AmplitudeandPhaseFrequencyCharacteristicsResonance

frequency

wrandresonantpeaking

Mr

Example4:When23AmplitudeandPhaseFrequencyCharacteristicsResonancefrequencyResonantpeakingwr,Mr

不存在24AmplitudeandPhaseFrequencyCharacteristics

AmplitudeandphasecharacteristicsTheamplitudeandphasecharacteristicsisshowninfigure.Determinethetransferfunction.Fromtheshapeofcurve,wehaveFromstartingpoint:Fromj(w0):From|G(w0)|:25AmplitudeandPhaseFrequencyCharacteristics

UnstableOscillationlink26

⑺ReciprocalQuadraticFactor

Magnitude-PhaseFrequencyCharacteristics27

⑻DelayFactorMagnitude-PhaseFrequencyCharacteristics28

NyquistPlotsofTypicalFactors⑴⑵⑶⑻⑸⑷⑹⑺Magnitude-PhaseFrequencyCharacteristics29

NyquistPlotofOpen-LoopTransferFunctionsNyquistPlotofOpen-loopTransferFunctionsStartingpoint

Endingpoint

30

NyquistPlotofOpen-LoopTransferFunctions31

A:

B:NyquistPlotofOpen-LoopTransferFunctions

32

SketchtheNyquistplotforSolution.Asymptotes:Intersectionpointwithrealaxis:

NyquistPlotofOpen-LoopTransferFunctions

33Example8.4Bodediagramofatwin-TnetworkThedeterminationofthefrequencyresponseusingthepole-zerodiagramandvectorstojωThetransferfunctionofthenetworkis8.2FrequencyResponsePlots34Ifthezerosareat±j1,andthepolesareatAtω=0Atω=1/τ

When8.2FrequencyResponsePlots358.2FrequencyResponsePlotsThelimitationsofpolarplotsTheadditionofpolesorzerostoanexistingsystemrequirestherecalculationofthefrequencyresponseFurthermore,calculatingthefrequencyresponseinthismanneristediousanddoesnotindicatetheeffectoftheindividualpolesorzeros.BodeDiagramsSemilogCoordinate37

BodeDiagrams

⑴Magitudemultiplication=Logarithmaddition

Convenientforsegmentaddition;LongitudinalaxisAbscissaAxisFeaturesofthecoordinateFeaturesScaledby

lgw,dec“Decade”按lgw

刻度,dec“十倍频程”Markedbyw.Distancereflectingratio按w标定,等距等比“Decibel”

⑵Representsfrequencycharacteristicinlargescale;⑶L(w)canbedeterminedbyexperiment,socanG(s).AnintroductionforBodediagrams(LogarithmicPlots)38Theprimaryadvantageofthelogarithmicplotistheconversionofmultiplicativefactors,suchas(jωτ+1),intoadditivefactors,20log(jωτ+1)byvirtueofthedefinitionoflogarithmicgain.ThegeneraltransferfunctionisGeneralcase39ThelogarithmicmagnitudeofG(jω)isThephaseangleplotis401.ConstantgainKb2.Poles(orzeros)attheorigin(jω)3.Poles(orzeros)attherealaxis(jωτ+1)4.Complexconjugatepoles(orzeros)Notes:WecandeterminethelogarithmicmagnitudeplotandphaseangleforthesefourfactorsandthenutilizethemtoobtainaBodediagramforanygeneralformofatransferfunctionTypicalfactors418.2FrequencyResponsePlotsThecurvesforeachfactorareobtainedandthenaddedtogethergraphicallytoobtainthecurvesforthecompletetransferfunction.Furthermorethisprocedurecanbesimplifiedbyusingtheasymptoticapproximationstothesecurvesandobtainingtheactualcurvesonlyatspecificimportantfrequencies.42ConstantGainKbThelogarithmicgainfortheconstantKbis8.2TheBodediagramoftypicalfactorsThegaincurveisahorizontallineontheBodediagram.Ifthegainisanegativevalue,-Kb,thelogarithmicgainremains20logKb.Thenegativesignisaccountedforbythephaseangle,-180°.Poles(orzeros)attheorigin(jω)LogarithmicmagnitudePhaseangledB8.2TheBodediagramoftypicalfactorsPolesorZerosontheRealAxisLogarithmicmagnitudeTheasymptoticcurveforω<<1/τis20log1=0dB,andtheasymptoticcurveforω>>1/τis–20logωτ,whichhasaslopeof–20dB/decade.Theintersectionofthetwoasymptotesoccurswhenω=1/τ,thebreakfrequency.Theactuallogarithmicgainis–3dBwhenω=1/τThephaseangleis8.2TheBodediagramoftypicalfactorsThephaseanglecurve8.2TheBodediagramoftypicalfactors46

TheLogarithmicplotoffirst-orderfactorsissymmetricaboutthe

(w=1/T,j=-45

)point.Prove:Suppose47ComplexConjugatePolesorZerosThelogarithmicmagnitudeforapairofcomplexconjugatepolesisThephaseangleisWhenu<<1,themagnitudeis

andphaseangleis00

Whenu>>1,themagnitudeis

andphaseangleis-1800

8.2TheBodediagramoftypicalfactors8.2FrequencyResponsePlots8.2FrequencyResponsePlotsThemaximumvalueofthefrequencyresponse,MPω,occursattheresonantfrequencyωr

Theresonantfrequencyisandthemaximumvalueofthemagnitude|G(ω)|is8.2FrequencyResponsePlots

BodeDiagramsReview

TheBodediagramoftypicalfactors⑴TheGain⑵DerivertiveFactor⑶IntegralFactor⑷First-OrderFactor52

⑸ReciprocalFirst-OderFactorBodeDiagramsReview53

⑹QuadraticFactorsBodeDiagramsReview54

BodeDiagramsReview⑺ReceprocalQuadraticFactors55

⑻DelayLinkBodeDiagramsReview568.3AnexampleofdrawingtheBodediagramTheBodediagramofatransferfunctionG(s)ThefactorshaveAconstantgainK=5ApoleattheoriginApoleatω=2Azeroatω=10Apairofcomplexpolesatω=ωn=5057588.3AnexampleofdrawingtheBodediagram5960618.3AnexampleofdrawingtheBodediagram62Insummary,onemayobtainapproximatecurvesforthemagnitudeandphaseshiftofatransferfunctionG(jω)inordertodeterminetheimportantfrequencyranges.Withintherelativelysmallimportantfrequencyranges,theexactmagnitudeandphaseshiftcanbereadilyevaluatebyusingtheexactequations.TheexactG(jω)canbeplottedbyMatlab

63BodeDiagramForOpen-loopSystemsThestepstosketchBodediagramforopen-loopsystem⑴Changingopen-loop

transferfunction

G(jw)

intotheendofastandardform⑵Listingtheturningfrequencyinturn.⑶确定基准线0.2Inertiallink0.5First-ordercompositedifferential

1OscillationLink基准点斜率⑷DrawingthediagramFirst-orderInertiallink-20dB/decCompositedifferential+20dB/decSecond-orderOscillationLink-40dB/decCompositedifferential-40dB/decw=0.2

Inertiallink-20w=0.5

First-ordercompositedifferential+20w=1

OscillationLink-40第一转折频率之左的特性及其延长线64BodeDiagramForOpen-loopSystems⑸Correction⑹Check①Whentheturningfrequencyoftwoinertiallinksareclosetoeachother②Whenoscillation

x(0.38,0.8)

①TherightmostslopeofL(w)isequalto

-20(n-m)dB/dec

②Thenumberofturningpoint=(Inertial)+(First-ordercompositedifferential)+(Oscillation)+(Second-ordercompositedifferential)③j(w)

-90°(n-m)基准点斜率w=0.2

Inertiallink-20w=0.5

First-ordercompositedifferential+20w=1

OscillationLink-4065

BodeDiagramForOpen-loopSystemsBasepoint

.SketchBodediagramSolution.①Standardform②Turningfrequencies③Baseline④Plotting

Slope

CheckTherightmostslopeofL(w)is-20(n-m)=0Thenumberofturningpoints=3j(w)tendsto

-90º(n-m)=0º

66

BodeDiagramForOpen-loopSystemsSketchtheBodeDiagramandtheNyquistPlot.

Solution.①BaselinePointSlope②③④Check

TherightmostslopeofL(w)is-20(n-m)=-80dB/decThenumberofturningpoints=3j(w)

-90o(n-m)=-360o67

BodeDiagramForOpen-loopSystemsSketchtheBodeDiagramandthe

NyquistPlot.

68

ObtainthetransferfunctionfromtheBodediagram.Solution.Fromtheplot

CorrespondingrelationbetweentheBodediagramandNyquistPlot:Turningfrequency

CutoffFrequency

wc:69

Solution.Fromthediagram:ObtainthetransferfunctionfromtheBodediagram.70

CorrespondingrelationbetweentheBodediagramandNyquistPlot:

CutoffFrequency

wc:71

BodeDiagramForOpen-loopSystemsObtainG(s)fromtheBodediagram.Solution.SolutionⅡSolutionⅠSolutionⅢProof:72

BodeDiagramForOpen-loopSystemsObtainG(s)andsketch

j(w)andtheNyquistplotforgivenL(w)ofaminimumphasesystem.Solution⑴III⑵Sketching

j(w)⑶73

BodeDiagramForOpen-loopSystems⑴⑵⑶⑷748.5PerformanceSpecificationintheFrequencyDomainDiscusstherelationshipbetweentheexpectedtransientresponseandthefrequencyresponseofthesystemForasimplesecond-ordersystem,wehavealreadyresulttothisproblem.Thetransferfunctionofsecond-orderclosed-loopsystemisThefrequencyresponseofthesystemisThesecond-ordersystem,thedampingrationofthesystemisrelatedtothemaximummagnitudeMpω

,thefrequencyωr-resonantfrequencyThebandwidth,ωB,isameasureofasystem’sabilitytofaithfullyreproduceaninputsignal8.5PerformanceSpecificationintheFrequencyDomain8.6LogMagnitudeandPhaseDiagramThereareseveralalternativemethodsofpresentingthefrequencyresponseofafunctionGH(jω).(1).Thepolarplot(2).TheBodediagramNowweintroduceanalternativeapproachtoportrayingthefrequencyresponsegraphically(3).Log-magnitude-phasediagram:thelogarithmicmagnitudeindBversusthephaseangleforarangeoffrequencies.Forexample,atransferfunctionisForexample,atransferfunctionis8.7DesignExample:EngravingMachineControlSystemTheengravingmachineTherearetwomotorsinthex-axisAseparatemotorisusedforbothy-axisandz-axisTheblockdiagrammodelforthex-axispositioncontrolsystemisThegoalistoselectanappropriategainK,utilizingfrequencyresponsemethods,sothatthetimeresponsetostepcommandsisacceptable8.7DesignExample:EngravingMachineControlSystemFirst,obtaintheopen-loopandclosed-loopBodediagramTheopen-looptransferfunction(frequencydomain)Wearbitrarilyselectk=2Thenopen-looptransferfunction8.7DesignExample:EngravingMachineControlSystemTheclosed-looptransferfunctionWeassumethatthesystemhasdominantsecond-orderroots,thesystemmaybesecond-orderformFromtheBodediagram,weget8.7DesignExample:EngravingMachineControlSystemWeareapproximatingT(s)asasecond-ordersystem,thenwehaveForseco

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论