




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter8
FrequencyResponseMethodCurriculumSystemSystemmodelingPerformanceissuesanalysiscorrectionTimedomainComplexdomainFrequencydomain8.1IntroductionLinearconstantcoefficientsystemsInputsignal:sinusoidal(frequency,magnitude,andphase)Keyconcepts:(8.1)FrequencyresponseFrequencycharacteristicRepresentationoffrequencycharacteristic(howtogetthem?)Polarplot(8.2)Bodeplot(8.2,8.3)Logmagnitudeandphasediagram(8.6)ApplicationsDeterminethesteady-stateresponsetoasinusoidalinput(8.1)Determinethetransferfunctionbyexperiment(8.4)Analyzeperformancespecificationinthefrequencydomain(8.5)Stabilityanalysis(chapter9)andDesign(chapter10)
Featuresoffrequencydomainanalysismethod⑴Thismethodstudieshowthemagnitudeandphaseofsinusoidalsteady-statevarywiththefrequency⑵Studiesthe
stabilityandperformanceoftheclosed-loopsystembytheopen-loopfrequencycharacteristics⑶Agraphicanalysismethod
⑷Anapproximatemethod8.1Introduction48.1IntroductionThefrequencyresponseofasystemisdefinedasthesteady-stateresponseofthesystemtoasinusoidalinputsignal.
Theresultingoutputsignalforalinearsystem,aswellassignalsthroughoutthesystem,issinusoidalwiththesamefrequencyasinputsinusoidalinthesteadystate;
Itdiffersfromtheinputwaveformonlyinamplitudeandphaseangle,andtheamountofdifferenceisafunctionoftheinputfrequency.Thesteady-stateoutputsignaldependsonlyonthemagnitudeandphaseofT(jω)ataspecificfrequency
ωs.
Y(s)=T(s)R(s)withr(t)=Asinωt.whereareassumedtobedistinctpoles.Theninpartialfractionformwehavewhereaandβ
areconstantswhichareproblemdependent.TakingtheinverseLaplacetransformyieldsDemonstrationexampleStaticoutputofthesystem
Parametersband
canbeobtainedby7
T(jω)canberepresentedby
8Oneadvantageofthefrequencyresponsemethodisthatexperimentaldeterminationofthefrequencyresponseofasystemiseasilyaccomplishedandisthemostreliableanduncomplicatedmethodfortheexperimentalanalysisofasystem.Furthermore,thedesignofasysteminthefrequencydomainprovidesthedesignerwithcontrolofthebandwidthofasystem,aswellassomemeasureoftheresponseofthesystemtoundesirednoiseanddisturbances.Asecondadvantageisthatthetransferfunctiondescribingthesinusoidalsteady-statebehaviorofasystemcanbeobtainedbyreplacingswithjωinthesystemtransferfunctionT(s)(calledasfrequencycharacteristic).Thebasicdisadvantageofthefrequencyresponsemethodforanalysisanddesignistheindirectlinkbetweenthefrequencyandthetimedomain.
ConceptofFrequency-ResponseCharacteristics
ConsidertheRCcircuitshowninthefigure(ur(t)=Asinwt).Obtainuc(t).Modeling10
DefinitionofFrequency-ResponseCharacteristicDefinition1Definition3Definition2Magnitude-FrequencyCharacteristic
Phase-Frequency
Characteristic
ConceptofFrequency-ResponseCharacteristics
11
Considerthesystemshowninthefigure(r(t)=3sin(2t+30º)).Obtaincs(t),es(t).Solution.ConceptofFrequency-ResponseCharacteristics
12
Frequency-ResponseCharacteristicsinGraphicalFormsⅠ.Frequencycharacteristic
Ⅱ.Magnitudeandphasecharacteristic
(Nyquist)Ⅲ.Log-magnitude-frequencycharacteristic
(Bode)Ⅳ.Log-phase-frequencycharacteristic
(Nichols)Magnitude-FrequencyPhase-FrequencyLog-magnitude-frequencyLog-phase-frequencyForConceptofFrequency-ResponseCharacteristics
13
CorrelationbetweenMathematicalmodelsConceptofFrequency-ResponseCharacteristics
14
Themagnitude-phasecurveforFirst-OrderfactorsMagnitude-PhaseFrequencyCharacteristics15
Magnitude-phasecharacteristicsoftypicalfactorsProve:Theamplitude-phasecharacteristicsoffirst-orderfactorsareasemicircle.
(Lowerhalfofthecircle)Magnitude-PhaseFrequencyCharacteristics16
Magnitude-phasecharacteristicsFromtheshapeofthecurve,weknowthatFromthestartingpoint:Fromj0From
j1:Obtainthetransferfunctionfromthemagnitude-phasecharacteristicsshowninthefigure.Magnitude-PhaseFrequencyCharacteristics17
UnstableFirst-OrderFactors⑸ReciprocalFirst-OrderFactorsMagnitude-PhaseFrequencyCharacteristics18Example8.2PolarplotoftransferfunctionThefrequencycharacteristicisThemagnitudeandphaseangleare8.2FrequencyResponsePlotsUsetherealandimaginarypartsofG(jω)as8.2FrequencyResponsePlots
§Magnitude-PhaseFrequencyCharacteristics(Nyquist)§Magnitude-PhaseFrequencyCharacteristicsofTypicalFactors⑴Thegain⑵Derivativefactor⑶Integralfactor⑷First-orderfactor21AmplitudeandPhaseFrequency⑹OscillationlinkAmplitudeandPhaseFrequencyCharacteristicsofTypicalLink22AmplitudeandPhaseFrequencyCharacteristicsResonance
frequency
wrandresonantpeaking
Mr
Example4:When23AmplitudeandPhaseFrequencyCharacteristicsResonancefrequencyResonantpeakingwr,Mr
不存在24AmplitudeandPhaseFrequencyCharacteristics
AmplitudeandphasecharacteristicsTheamplitudeandphasecharacteristicsisshowninfigure.Determinethetransferfunction.Fromtheshapeofcurve,wehaveFromstartingpoint:Fromj(w0):From|G(w0)|:25AmplitudeandPhaseFrequencyCharacteristics
UnstableOscillationlink26
⑺ReciprocalQuadraticFactor
Magnitude-PhaseFrequencyCharacteristics27
⑻DelayFactorMagnitude-PhaseFrequencyCharacteristics28
NyquistPlotsofTypicalFactors⑴⑵⑶⑻⑸⑷⑹⑺Magnitude-PhaseFrequencyCharacteristics29
NyquistPlotofOpen-LoopTransferFunctionsNyquistPlotofOpen-loopTransferFunctionsStartingpoint
Endingpoint
30
NyquistPlotofOpen-LoopTransferFunctions31
A:
B:NyquistPlotofOpen-LoopTransferFunctions
32
SketchtheNyquistplotforSolution.Asymptotes:Intersectionpointwithrealaxis:
NyquistPlotofOpen-LoopTransferFunctions
33Example8.4Bodediagramofatwin-TnetworkThedeterminationofthefrequencyresponseusingthepole-zerodiagramandvectorstojωThetransferfunctionofthenetworkis8.2FrequencyResponsePlots34Ifthezerosareat±j1,andthepolesareatAtω=0Atω=1/τ
When8.2FrequencyResponsePlots358.2FrequencyResponsePlotsThelimitationsofpolarplotsTheadditionofpolesorzerostoanexistingsystemrequirestherecalculationofthefrequencyresponseFurthermore,calculatingthefrequencyresponseinthismanneristediousanddoesnotindicatetheeffectoftheindividualpolesorzeros.BodeDiagramsSemilogCoordinate37
BodeDiagrams
⑴Magitudemultiplication=Logarithmaddition
Convenientforsegmentaddition;LongitudinalaxisAbscissaAxisFeaturesofthecoordinateFeaturesScaledby
lgw,dec“Decade”按lgw
刻度,dec“十倍频程”Markedbyw.Distancereflectingratio按w标定,等距等比“Decibel”
⑵Representsfrequencycharacteristicinlargescale;⑶L(w)canbedeterminedbyexperiment,socanG(s).AnintroductionforBodediagrams(LogarithmicPlots)38Theprimaryadvantageofthelogarithmicplotistheconversionofmultiplicativefactors,suchas(jωτ+1),intoadditivefactors,20log(jωτ+1)byvirtueofthedefinitionoflogarithmicgain.ThegeneraltransferfunctionisGeneralcase39ThelogarithmicmagnitudeofG(jω)isThephaseangleplotis401.ConstantgainKb2.Poles(orzeros)attheorigin(jω)3.Poles(orzeros)attherealaxis(jωτ+1)4.Complexconjugatepoles(orzeros)Notes:WecandeterminethelogarithmicmagnitudeplotandphaseangleforthesefourfactorsandthenutilizethemtoobtainaBodediagramforanygeneralformofatransferfunctionTypicalfactors418.2FrequencyResponsePlotsThecurvesforeachfactorareobtainedandthenaddedtogethergraphicallytoobtainthecurvesforthecompletetransferfunction.Furthermorethisprocedurecanbesimplifiedbyusingtheasymptoticapproximationstothesecurvesandobtainingtheactualcurvesonlyatspecificimportantfrequencies.42ConstantGainKbThelogarithmicgainfortheconstantKbis8.2TheBodediagramoftypicalfactorsThegaincurveisahorizontallineontheBodediagram.Ifthegainisanegativevalue,-Kb,thelogarithmicgainremains20logKb.Thenegativesignisaccountedforbythephaseangle,-180°.Poles(orzeros)attheorigin(jω)LogarithmicmagnitudePhaseangledB8.2TheBodediagramoftypicalfactorsPolesorZerosontheRealAxisLogarithmicmagnitudeTheasymptoticcurveforω<<1/τis20log1=0dB,andtheasymptoticcurveforω>>1/τis–20logωτ,whichhasaslopeof–20dB/decade.Theintersectionofthetwoasymptotesoccurswhenω=1/τ,thebreakfrequency.Theactuallogarithmicgainis–3dBwhenω=1/τThephaseangleis8.2TheBodediagramoftypicalfactorsThephaseanglecurve8.2TheBodediagramoftypicalfactors46
TheLogarithmicplotoffirst-orderfactorsissymmetricaboutthe
(w=1/T,j=-45
)point.Prove:Suppose47ComplexConjugatePolesorZerosThelogarithmicmagnitudeforapairofcomplexconjugatepolesisThephaseangleisWhenu<<1,themagnitudeis
andphaseangleis00
Whenu>>1,themagnitudeis
andphaseangleis-1800
8.2TheBodediagramoftypicalfactors8.2FrequencyResponsePlots8.2FrequencyResponsePlotsThemaximumvalueofthefrequencyresponse,MPω,occursattheresonantfrequencyωr
Theresonantfrequencyisandthemaximumvalueofthemagnitude|G(ω)|is8.2FrequencyResponsePlots
BodeDiagramsReview
TheBodediagramoftypicalfactors⑴TheGain⑵DerivertiveFactor⑶IntegralFactor⑷First-OrderFactor52
⑸ReciprocalFirst-OderFactorBodeDiagramsReview53
⑹QuadraticFactorsBodeDiagramsReview54
BodeDiagramsReview⑺ReceprocalQuadraticFactors55
⑻DelayLinkBodeDiagramsReview568.3AnexampleofdrawingtheBodediagramTheBodediagramofatransferfunctionG(s)ThefactorshaveAconstantgainK=5ApoleattheoriginApoleatω=2Azeroatω=10Apairofcomplexpolesatω=ωn=5057588.3AnexampleofdrawingtheBodediagram5960618.3AnexampleofdrawingtheBodediagram62Insummary,onemayobtainapproximatecurvesforthemagnitudeandphaseshiftofatransferfunctionG(jω)inordertodeterminetheimportantfrequencyranges.Withintherelativelysmallimportantfrequencyranges,theexactmagnitudeandphaseshiftcanbereadilyevaluatebyusingtheexactequations.TheexactG(jω)canbeplottedbyMatlab
63BodeDiagramForOpen-loopSystemsThestepstosketchBodediagramforopen-loopsystem⑴Changingopen-loop
transferfunction
G(jw)
intotheendofastandardform⑵Listingtheturningfrequencyinturn.⑶确定基准线0.2Inertiallink0.5First-ordercompositedifferential
1OscillationLink基准点斜率⑷DrawingthediagramFirst-orderInertiallink-20dB/decCompositedifferential+20dB/decSecond-orderOscillationLink-40dB/decCompositedifferential-40dB/decw=0.2
Inertiallink-20w=0.5
First-ordercompositedifferential+20w=1
OscillationLink-40第一转折频率之左的特性及其延长线64BodeDiagramForOpen-loopSystems⑸Correction⑹Check①Whentheturningfrequencyoftwoinertiallinksareclosetoeachother②Whenoscillation
x(0.38,0.8)
①TherightmostslopeofL(w)isequalto
-20(n-m)dB/dec
②Thenumberofturningpoint=(Inertial)+(First-ordercompositedifferential)+(Oscillation)+(Second-ordercompositedifferential)③j(w)
-90°(n-m)基准点斜率w=0.2
Inertiallink-20w=0.5
First-ordercompositedifferential+20w=1
OscillationLink-4065
BodeDiagramForOpen-loopSystemsBasepoint
.SketchBodediagramSolution.①Standardform②Turningfrequencies③Baseline④Plotting
Slope
⑤
CheckTherightmostslopeofL(w)is-20(n-m)=0Thenumberofturningpoints=3j(w)tendsto
-90º(n-m)=0º
66
BodeDiagramForOpen-loopSystemsSketchtheBodeDiagramandtheNyquistPlot.
Solution.①BaselinePointSlope②③④Check
TherightmostslopeofL(w)is-20(n-m)=-80dB/decThenumberofturningpoints=3j(w)
-90o(n-m)=-360o67
BodeDiagramForOpen-loopSystemsSketchtheBodeDiagramandthe
NyquistPlot.
68
ObtainthetransferfunctionfromtheBodediagram.Solution.Fromtheplot
CorrespondingrelationbetweentheBodediagramandNyquistPlot:Turningfrequency
CutoffFrequency
wc:69
Solution.Fromthediagram:ObtainthetransferfunctionfromtheBodediagram.70
CorrespondingrelationbetweentheBodediagramandNyquistPlot:
CutoffFrequency
wc:71
BodeDiagramForOpen-loopSystemsObtainG(s)fromtheBodediagram.Solution.SolutionⅡSolutionⅠSolutionⅢProof:72
BodeDiagramForOpen-loopSystemsObtainG(s)andsketch
j(w)andtheNyquistplotforgivenL(w)ofaminimumphasesystem.Solution⑴III⑵Sketching
j(w)⑶73
BodeDiagramForOpen-loopSystems⑴⑵⑶⑷748.5PerformanceSpecificationintheFrequencyDomainDiscusstherelationshipbetweentheexpectedtransientresponseandthefrequencyresponseofthesystemForasimplesecond-ordersystem,wehavealreadyresulttothisproblem.Thetransferfunctionofsecond-orderclosed-loopsystemisThefrequencyresponseofthesystemisThesecond-ordersystem,thedampingrationofthesystemisrelatedtothemaximummagnitudeMpω
,thefrequencyωr-resonantfrequencyThebandwidth,ωB,isameasureofasystem’sabilitytofaithfullyreproduceaninputsignal8.5PerformanceSpecificationintheFrequencyDomain8.6LogMagnitudeandPhaseDiagramThereareseveralalternativemethodsofpresentingthefrequencyresponseofafunctionGH(jω).(1).Thepolarplot(2).TheBodediagramNowweintroduceanalternativeapproachtoportrayingthefrequencyresponsegraphically(3).Log-magnitude-phasediagram:thelogarithmicmagnitudeindBversusthephaseangleforarangeoffrequencies.Forexample,atransferfunctionisForexample,atransferfunctionis8.7DesignExample:EngravingMachineControlSystemTheengravingmachineTherearetwomotorsinthex-axisAseparatemotorisusedforbothy-axisandz-axisTheblockdiagrammodelforthex-axispositioncontrolsystemisThegoalistoselectanappropriategainK,utilizingfrequencyresponsemethods,sothatthetimeresponsetostepcommandsisacceptable8.7DesignExample:EngravingMachineControlSystemFirst,obtaintheopen-loopandclosed-loopBodediagramTheopen-looptransferfunction(frequencydomain)Wearbitrarilyselectk=2Thenopen-looptransferfunction8.7DesignExample:EngravingMachineControlSystemTheclosed-looptransferfunctionWeassumethatthesystemhasdominantsecond-orderroots,thesystemmaybesecond-orderformFromtheBodediagram,weget8.7DesignExample:EngravingMachineControlSystemWeareapproximatingT(s)asasecond-ordersystem,thenwehaveForseco
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南开18语文高三第一次月考作文
- 电子测量技术在海洋开发中的应用考核试卷
- 生态保护与草原生态治理考核试卷
- 电气设备绝缘测试考核试卷
- 天津市西青区张窝中学2024−2025学年高一下学期第一次月考 数学试题(含解析)
- 规范的采血流程 2
- 山东省济南市重点中学2025届高中毕业班第二次质量检测试题英语试题文试题含解析
- 山东省泰安市宁阳县重点名校2024-2025学年初三下学期第三次四校联考物理试题试卷含解析
- 莱芜职业技术学院《水工建筑材料》2023-2024学年第二学期期末试卷
- 吉林省长春市榆树市一中2025届高三下学期第四次(1月)月考英语试题试卷含解析
- 脚手架稳定计算
- 信息系统网络安全应急预案
- 掉落物落地品管理规定
- 【图文】GB8624-2012建筑材料及制品燃烧性能分级(精)
- 科姆龙变频器说明书kv2000
- 小学生读书知识竞赛试题
- 蓝色简约法律通用PPT模板
- 旅行社挂靠协议(样板)
- 皮尔逊Ⅲ型曲线模比系数计算表(共享版)
- 房屋租赁合以装修费抵租金
- Z5140型立式钻床说明书
评论
0/150
提交评论