河北省承德市隆化县存瑞中学2025届高三下学期第二次统一检测试题数学试题_第1页
河北省承德市隆化县存瑞中学2025届高三下学期第二次统一检测试题数学试题_第2页
河北省承德市隆化县存瑞中学2025届高三下学期第二次统一检测试题数学试题_第3页
河北省承德市隆化县存瑞中学2025届高三下学期第二次统一检测试题数学试题_第4页
河北省承德市隆化县存瑞中学2025届高三下学期第二次统一检测试题数学试题_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省承德市隆化县存瑞中学2025届高三下学期第二次统一检测试题数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线:与圆:交于,两点,与平行的直线与圆交于,两点,且与的面积相等,给出下列直线:①,②,③,④.其中满足条件的所有直线的编号有()A.①② B.①④ C.②③ D.①②④2.若函数恰有3个零点,则实数的取值范围是()A. B. C. D.3.已知整数满足,记点的坐标为,则点满足的概率为()A. B. C. D.4.如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.则下列结论中表述不正确的是()A.从2000年至2016年,该地区环境基础设施投资额逐年增加;B.2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C.2012年该地区基础设施的投资额比2004年的投资额翻了两番;D.为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.5.从集合中随机选取一个数记为,从集合中随机选取一个数记为,则在方程表示双曲线的条件下,方程表示焦点在轴上的双曲线的概率为()A. B. C. D.6.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线恰好是四叶玫瑰线.给出下列结论:①曲线C经过5个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到坐标原点O的距离都不超过2;③曲线C围成区域的面积大于;④方程表示的曲线C在第二象限和第四象限其中正确结论的序号是()A.①③ B.②④ C.①②③ D.②③④7.设是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为()A. B. C. D.8.在中,“”是“为钝角三角形”的()A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既不充分也不必要条件9.欧拉公式为,(虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数位于复平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知函数(其中为自然对数的底数)有两个零点,则实数的取值范围是()A. B.C. D.11.已知集合,则集合的非空子集个数是()A.2 B.3 C.7 D.812.如图是一个算法流程图,则输出的结果是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若满足,则目标函数的最大值为______.14.若点在直线上,则的值等于______________.15.如图,养殖公司欲在某湖边依托互相垂直的湖岸线、围成一个三角形养殖区.为了便于管理,在线段之间有一观察站点,到直线,的距离分别为8百米、1百米,则观察点到点、距离之和的最小值为______________百米.16.成都市某次高三统考,成绩X经统计分析,近似服从正态分布,且,若该市有人参考,则估计成都市该次统考中成绩大于分的人数为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(其中是自然对数的底数)(1)若在R上单调递增,求正数a的取值范围;(2)若f(x)在处导数相等,证明:;(3)当时,证明:对于任意,若,则直线与曲线有唯一公共点(注:当时,直线与曲线的交点在y轴两侧).18.(12分)某公司欲投资一新型产品的批量生产,预计该产品的每日生产总成本价格)(单位:万元)是每日产量(单位:吨)的函数:.(1)求当日产量为吨时的边际成本(即生产过程中一段时间的总成本对该段时间产量的导数);(2)记每日生产平均成本求证:;(3)若财团每日注入资金可按数列(单位:亿元)递减,连续注入天,求证:这天的总投入资金大于亿元.19.(12分)如图,四棱锥的底面为直角梯形,,,,底面,且,为的中点.(1)证明:;(2)设点是线段上的动点,当直线与直线所成的角最小时,求三棱锥的体积.20.(12分)已知数列{an}的各项均为正,Sn为数列{an}的前n项和,an2+2an=4Sn+1.(1)求{an}的通项公式;(2)设bn,求数列{bn}的前n项和.21.(12分)如图,直三棱柱中,分别是的中点,.(1)证明:平面;(2)求二面角的余弦值.22.(10分)已知函数f(x)ax﹣lnx(a∈R).(1)若a=2时,求函数f(x)的单调区间;(2)设g(x)=f(x)1,若函数g(x)在上有两个零点,求实数a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

求出圆心到直线的距离为:,得出,根据条件得出到直线的距离或时满足条件,即可得出答案.【详解】解:由已知可得:圆:的圆心为(0,0),半径为2,则圆心到直线的距离为:,∴,而,与的面积相等,∴或,即到直线的距离或时满足条件,根据点到直线距离可知,①②④满足条件.故选:D.【点睛】本题考查直线与圆的位置关系的应用,涉及点到直线的距离公式.2、B【解析】

求导函数,求出函数的极值,利用函数恰有三个零点,即可求实数的取值范围.【详解】函数的导数为,令,则或,上单调递减,上单调递增,所以0或是函数y的极值点,函数的极值为:,函数恰有三个零点,则实数的取值范围是:.故选B.【点睛】该题考查的是有关结合函数零点个数,来确定参数的取值范围的问题,在解题的过程中,注意应用导数研究函数图象的走向,利用数形结合思想,转化为函数图象间交点个数的问题,难度不大.3、D【解析】

列出所有圆内的整数点共有37个,满足条件的有7个,相除得到概率.【详解】因为是整数,所以所有满足条件的点是位于圆(含边界)内的整数点,满足条件的整数点有共37个,满足的整数点有7个,则所求概率为.故选:.【点睛】本题考查了古典概率的计算,意在考查学生的应用能力.4、D【解析】

根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项.【详解】对于选项,由图像可知,投资额逐年增加是正确的.对于选项,投资总额为亿元,小于年的亿元,故描述正确.年的投资额为亿,翻两翻得到,故描述正确.对于选项,令代入回归直线方程得亿元,故选项描述不正确.所以本题选D.【点睛】本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题.5、A【解析】

设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,分别计算出,再利用公式计算即可.【详解】设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,由题意,,,则所求的概率为.故选:A.【点睛】本题考查利用定义计算条件概率的问题,涉及到双曲线的定义,是一道容易题.6、B【解析】

利用基本不等式得,可判断②;和联立解得可判断①③;由图可判断④.【详解】,解得(当且仅当时取等号),则②正确;将和联立,解得,即圆与曲线C相切于点,,,,则①和③都错误;由,得④正确.故选:B.【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.7、D【解析】

利用向量运算可得,即,由为的中位线,得到,所以,再根据双曲线定义即可求得离心率.【详解】取的中点,则由得,即;在中,为的中位线,所以,所以;由双曲线定义知,且,所以,解得,故选:D【点睛】本题综合考查向量运算与双曲线的相关性质,难度一般.8、C【解析】分析:从两个方向去判断,先看能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出成立,从而必要性也不满足,从而选出正确的结果.详解:由题意可得,在中,因为,所以,因为,所以,,结合三角形内角的条件,故A,B同为锐角,因为,所以,即,所以,因此,所以是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若是钝角三角形,也推不出“,故必要性不成立,所以为既不充分也不必要条件,故选D.点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征.9、A【解析】

计算,得到答案.【详解】根据题意,故,表示的复数在第一象限.故选:.【点睛】本题考查了复数的计算,意在考查学生的计算能力和理解能力.10、B【解析】

求出导函数,确定函数的单调性,确定函数的最值,根据零点存在定理可确定参数范围.【详解】,当时,,单调递增,当时,,单调递减,∴在上只有一个极大值也是最大值,显然时,,时,,因此要使函数有两个零点,则,∴.故选:B.【点睛】本题考查函数的零点,考查用导数研究函数的最值,根据零点存在定理确定参数范围.11、C【解析】

先确定集合中元素,可得非空子集个数.【详解】由题意,共3个元素,其子集个数为,非空子集有7个.故选:C.【点睛】本题考查集合的概念,考查子集的概念,含有个元素的集合其子集个数为,非空子集有个.12、A【解析】

执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案.【详解】由题意,执行上述的程序框图:第1次循环:满足判断条件,;第2次循环:满足判断条件,;第3次循环:满足判断条件,;不满足判断条件,输出计算结果,故选A.【点睛】本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、-1【解析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由约束条件作出可行域如图,化目标函数为,由图可得,当直线过点时,直线在轴上的截距最大,由得即,则有最大值,故答案为.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.14、【解析】

根据题意可得,再由,即可得到结论.【详解】由题意,得,又,解得,当时,则,此时;当时,则,此时,综上,.故答案为:.【点睛】本题考查诱导公式和同角的三角函数的关系,考查计算能力,属于基础题.15、【解析】

建系,将直线用方程表示出来,再用参数表示出线段的长度,最后利用导数来求函数最小值.【详解】以为原点,所在直线分别作为轴,建立平面直角坐标系,则.设直线,即,则,所以,所以,,则,则,当时,,则单调递减,当时,,则单调递增,所以当时,最短,此时.故答案为:【点睛】本题考查导数的实际应用,属于中档题.16、.【解析】

根据正态分布密度曲线性质,结合求得,即可得解.【详解】根据正态分布,且,所以故该市有人参考,则估计成都市该次统考中成绩大于分的人数为.故答案为:.【点睛】此题考查正态分布密度曲线性质的理解辨析,根据曲线的对称性求解概率,根据总人数求解成绩大于114的人数.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析;(3)见解析【解析】

(1)需满足恒成立,只需即可;(2)根据的单调性,构造新函数,并令,根据的单调性即可得证;(3)将问题转化为证明有唯一实数解,对求导,判断其单调性,结合题目条件与不等式的放缩,即可得证.【详解】;令,则恒成立;,;的取值范围是;(2)证明:由(1)知,在上单调递减,在上单调递增;;令,;则;令,则;;;(3)证明:,,要证明有唯一实数解;当时,;当时,;即对于任意实数,一定有解;;当时,有两个极值点;函数在,,上单调递增,在上单调递减;又;只需,在时恒成立;只需;令,其中一个正解是;,;单调递增,,(1);;;综上得证.【点睛】本题考查了利用导数研究函数的单调性,考查了利用导数证明不等式,考查了转化思想、不等式的放缩,属难题.18、(1);(2)证明见解析;(3)证明见解析.【解析】

(1)求得函数的导函数,由此求得求当日产量为吨时的边际成本.(2)将所要证明不等式转化为证明,构造函数,利用导数证得,由此证得不等式成立.(3)利用(2)的结论,判断出,由此结合对数运算,证得.【详解】(1)因为所以当时,(2)要证,只需证,即证,设则所以在上单调递减,所以所以,即;(3)因为又由(2)知,当时,所以所以所以【点睛】本小题主要考查导数的计算,考查利用导数证明不等式,考查放缩法证明数列不等式,属于难题.19、(1)见解析;(2).【解析】

(1)要证明,只需证明平面即可;(2)以C为原点,分别以的方向为轴、轴、轴的正方向,建立空间直角坐标系,利用向量法求,并求其最大值从而确定出使问题得到解决.【详解】(1)连结AC、AE,由已知,四边形ABCE为正方形,则①,因为底面,则②,由①②知平面,所以.(2)以C为原点,建立如图所示的空间直角坐标系,则,,,,所以,,,设,,则,所以,设,则,所以当,即时,取最大值,从而取最小值,即直线与直线所成的角最小,此时,则,因为,,则平面,从而M到平面的距离,所以.【点睛】本题考查线面垂直证线线垂直、异面直线直线所成角计算、换元法求函数最值以及等体积法求三棱锥的体积,考查的内容较多,计算量较大,解决此类问题最关键是准确写出点的坐标,是一道中档题.20、(1)an=2n+1;(2)2.【解析】

(1)根据题意求出首项,再由(an+12+2an+1)﹣(an2+2an)=4an+1,求得该数列为等差数列即可求得通项公式;(2)利用错位相减法进行数列求和.【详解】(1)∵an2+2an=4Sn+1,∴a12+2a1=4S1+1,即,解得:a1=1或a1=﹣1(舍),又∵an+12+2an+1=4Sn+1+1,∴(an+12+2an+1)﹣(an2+2an)=4an+1,整理得:(an+1﹣an)(an+1+an)=2(an+1+an),又∵数列{an}的各项均为正,∴an+1﹣an=2,∴数列{an}是首项为1、公差为2的等差数列,∴数列{an}的通项公式an=1+2(n﹣1)=2n+1;(2)由(1)可知bn,记数列{bn}的前n项和为Tn,则Tn=1•5•(2n+1)•,Tn=1•5••…+(2n﹣1)•(2n+1)•,错位相减得:Tn=1+2(•)﹣(2n+1)•=1+2,∴Tn()=2.【点睛】此题考查求等差数列的基本量,根据递推关系判定等差数列,根据错位相减进行数列求和,关键在于熟记方法准确计算.21、(1)证明

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论