




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省深圳高级中学2025年高三TOP20九月联考(全国II卷)数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是等差数列的前项和,,,则()A.85 B. C.35 D.2.设,则复数的模等于()A. B. C. D.3.陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的《帝京景物略》一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为()A. B.C. D.4.点是单位圆上不同的三点,线段与线段交于圆内一点M,若,则的最小值为()A. B. C. D.5.为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是()A.甲的数据分析素养优于乙 B.乙的数据分析素养优于数学建模素养C.甲的六大素养整体水平优于乙 D.甲的六大素养中数学运算最强6.已知函数,则()A.函数在上单调递增 B.函数在上单调递减C.函数图像关于对称 D.函数图像关于对称7.若复数(是虚数单位),则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-xA.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)9.已知集合,若,则实数的取值范围为()A. B. C. D.10.已知定义在上的奇函数,其导函数为,当时,恒有.则不等式的解集为().A. B.C.或 D.或11.设,则,则()A. B. C. D.12.如图,在中,,是上的一点,若,则实数的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,若向量与共线,则________.14.在平面直角坐标系中,已知圆及点,设点是圆上的动点,在中,若的角平分线与相交于点,则的取值范围是_______.15.已知为正实数,且,则的最小值为____________.16.能说明“若对于任意的都成立,则在上是减函数”为假命题的一个函数是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在如图所示的四棱锥中,四边形是等腰梯形,,,平面,,.(1)求证:平面;(2)已知二面角的余弦值为,求直线与平面所成角的正弦值.18.(12分)已知椭圆()的离心率为,且经过点.(1)求椭圆的方程;(2)过点作直线与椭圆交于不同的两点,,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.19.(12分)选修4-2:矩阵与变换(本小题满分10分)已知矩阵A=(k≠0)的一个特征向量为α=,A的逆矩阵A-1对应的变换将点(3,1)变为点(1,1).求实数a,k的值.20.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.21.(12分)已知是抛物线:的焦点,点在上,到轴的距离比小1.(1)求的方程;(2)设直线与交于另一点,为的中点,点在轴上,.若,求直线的斜率.22.(10分)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为.(Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
将已知条件转化为的形式,求得,由此求得.【详解】设公差为,则,所以,,,.故选:B本小题主要考查等差数列通项公式的基本量计算,考查等差数列前项和的计算,属于基础题.2.C【解析】
利用复数的除法运算法则进行化简,再由复数模的定义求解即可.【详解】因为,所以,由复数模的定义知,.故选:C本题考查复数的除法运算法则和复数的模;考查运算求解能力;属于基础题.3.C【解析】
根据三视图可知,该几何体是由两个圆锥和一个圆柱构成,由此计算出陀螺的表面积.【详解】最上面圆锥的母线长为,底面周长为,侧面积为,下面圆锥的母线长为,底面周长为,侧面积为,没被挡住的部分面积为,中间圆柱的侧面积为.故表面积为,故选C.本小题主要考查中国古代数学文化,考查三视图还原为原图,考查几何体表面积的计算,属于基础题.4.D【解析】
由题意得,再利用基本不等式即可求解.【详解】将平方得,(当且仅当时等号成立),,的最小值为,故选:D.本题主要考查平面向量数量积的应用,考查基本不等式的应用,属于中档题.5.D【解析】
根据所给的雷达图逐个选项分析即可.【详解】对于A,甲的数据分析素养为100分,乙的数据分析素养为80分,故甲的数据分析素养优于乙,故A正确;对于B,乙的数据分析素养为80分,数学建模素养为60分,故乙的数据分析素养优于数学建模素养,故B正确;对于C,甲的六大素养整体水平平均得分为,乙的六大素养整体水平均得分为,故C正确;对于D,甲的六大素养中数学运算为80分,不是最强的,故D错误;故选:D本题考查了样本数据的特征、平均数的计算,考查了学生的数据处理能力,属于基础题.6.C【解析】
依题意可得,即函数图像关于对称,再求出函数的导函数,即可判断函数的单调性;【详解】解:由,,所以函数图像关于对称,又,在上不单调.故正确的只有C,故选:C本题考查函数的对称性的判定,利用导数判断函数的单调性,属于基础题.7.A【解析】
将整理成的形式,得到复数所对应的的点,从而可选出所在象限.【详解】解:,所以所对应的点为在第一象限.故选:A.本题考查了复数的乘法运算,考查了复数对应的坐标.易错点是误把当成进行计算.8.B【解析】M=y|y=N==x|∴M∩N=(1,2).故选B.9.A【解析】
解一元二次不等式化简集合的表示,求解函数的定义域化简集合的表示,根据可以得到集合、之间的关系,结合数轴进行求解即可.【详解】,.因为,所以有,因此有.故选:A本题考查了已知集合运算的结果求参数取值范围问题,考查了解一元二次不等式,考查了函数的定义域,考查了数学运算能力.10.D【解析】
先通过得到原函数为增函数且为偶函数,再利用到轴距离求解不等式即可.【详解】构造函数,则由题可知,所以在时为增函数;由为奇函数,为奇函数,所以为偶函数;又,即即又为开口向上的偶函数所以,解得或故选:D此题考查根据导函数构造原函数,偶函数解不等式等知识点,属于较难题目.11.A【解析】
根据换底公式可得,再化简,比较的大小,即得答案.【详解】,,.,显然.,即,,即.综上,.故选:.本题考查换底公式和对数的运算,属于中档题.12.B【解析】
变形为,由得,转化在中,利用三点共线可得.【详解】解:依题:,又三点共线,,解得.故选:.本题考查平面向量基本定理及用向量共线定理求参数.思路是(1)先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.利用向量共线定理及向量相等的条件列方程(组)求参数的值.(2)直线的向量式参数方程:三点共线⇔(为平面内任一点,)二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
计算得到,根据向量平行计算得到答案.【详解】由题意可得,因为与共线,所以有,即,解得.故答案为:.本题考查了根据向量平行求参数,意在考查学生的计算能力.14.【解析】
由角平分线成比例定理推理可得,进而设点表示向量构建方程组表示点P坐标,代入圆C方程即可表示动点Q的轨迹方程,再由将所求视为该圆上的点与原点间的距离,所以其最值为圆心到原点的距离加减半径.【详解】由题可构建如图所示的图形,因为AQ是的角平分线,由角平分线成比例定理可知,所以.设点,点,即,则,所以.又因为点是圆上的动点,则,故点Q的运功轨迹是以为圆心为半径的圆,又即为该圆上的点与原点间的距离,因为,所以故答案为:本题考查与圆有关的距离的最值问题,常常转化到圆心的距离加减半径,还考查了求动点的轨迹方程,属于中档题.15.【解析】
,所以有,再利用基本不等式求最值即可.【详解】由已知,,所以,当且仅当,即时,等号成立.故答案为:本题考查利用基本不等式求和的最小值问题,采用的是“1”的替换,也可以消元等,是一道中档题.16.答案不唯一,如【解析】
根据对基本函数的理解可得到满足条件的函数.【详解】由题意,不妨设,则在都成立,但是在是单调递增的,在是单调递减的,说明原命题是假命题.所以本题答案为,答案不唯一,符合条件即可.本题考查对基本初等函数的图像和性质的理解,关键是假设出一个在上不是单调递减的函数,再检验是否满足命题中的条件,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析;(2).【解析】
(1)由已知可得,结合,由直线与平面垂直的判定可得平面;(2)由(1)知,,则,,两两互相垂直,以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,设,0,,由二面角的余弦值为求解,再由空间向量求解直线与平面所成角的正弦值.【详解】(1)证明:因为四边形是等腰梯形,,,所以.又,所以,因此,,又,且,,平面,所以平面.(2)取的中点,连接,,由于,因此,又平面,平面,所以.由于,,平面,所以平面,故,所以为二面角的平面角.在等腰三角形中,由于,因此,又,因为,所以,所以以为轴、为轴、为轴建立空间直角坐标系,则,,,,设平面的法向量为所以,即,令,则,,则平面的法向量,,设直线与平面所成角为,则本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,属于中档题.18.(1)(2)见解析【解析】
(1)由题得a,b,c的方程组求解即可(2)直线与直线恰关于轴对称,等价于的斜率互为相反数,即,整理.设直线的方程为,与椭圆联立,将韦达定理代入整理即可.【详解】(1)由题意可得,,又,解得,.所以,椭圆的方程为(2)存在定点,满足直线与直线恰关于轴对称.设直线的方程为,与椭圆联立,整理得,.设,,定点.(依题意则由韦达定理可得,,.直线与直线恰关于轴对称,等价于的斜率互为相反数.所以,,即得.又,,所以,,整理得,.从而可得,,即,所以,当,即时,直线与直线恰关于轴对称成立.特别地,当直线为轴时,也符合题意.综上所述,存在轴上的定点,满足直线与直线恰关于轴对称.本题考查椭圆方程,直线与椭圆位置关系,熟记椭圆方程简单性质,熟练转化题目条件,准确计算是关键,是中档题.19.解:设特征向量为α=对应的特征值为λ,则=λ,即因为k≠0,所以a=2.5分因为,所以A=,即=,所以2+k=3,解得k=2.综上,a=2,k=2.20分【解析】试题分析:由特征向量求矩阵A,由逆矩阵求k考点:特征向量,逆矩阵点评:本题主要考查了二阶矩阵,以及特征值与特征向量的计算,考查逆矩阵.20.(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根据条件由正弦定理得,又c=2a,所以,由余弦定理算出,进而算出;(Ⅱ)由二倍角公式算出,代入两角和的正弦公式计算即可.【详解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.本题主要考查了正余弦定理的应用,运用二倍角公式和两角和的正弦公式求值,考查了学生的运算求解能力.21.(1)(2)【解析】
(1)由抛物线定义可知,解得,故抛物线的方程为;(2)设直线:,联立,利用韦达定理算出的中点,又,所以直线的方程为,求出,利用求解即可.【详解】(1)设的准线为,过作于,则由抛物线定义,得,因为到的距离比到轴的距离大1,所以,解得,所以的方程为(2)由题意,设直线方程为,由消去,得,设,,则,所以,又因为为的中点,点的坐标为,直线的方程为,令,得,点的坐标为,所以,解得,所以直线的斜率为.本题主要考查抛物线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江省稽阳联谊学校2025年4月高三联考数学试卷(含答案)
- 《人生的意义在于奉献》课件
- 《演讲的艺术》课件
- 受弯构件的其他构造要求钢筋混凝土结构课件
- 短期合同续签建议
- 铁路班组管理S班组凝聚力训练课件
- 讨论照明电路能否采用三相三线制供电方式不加零线会不会出现问
- 网格桥架安装施工方案
- 铁路客运站车无线交互系统客运管理部分课件
- 大学生职业规划大赛《视觉传达设计专业》生涯发展展示
- 院感试题100题及答案
- 急性冠脉综合征诊断及治疗课件
- 吹小号的天鹅试题及答案
- 数据库开发 试题及答案
- GB/T 45434.3-2025中国标准时间第3部分:公报
- 2024年郑州工业应用技术学院单招职业适应性测试题库附答案
- 北京市消防条例解读
- 农业合作社管理与运营模式试题及答案
- Unit 4 Clothes 单元整体(教学设计)-2024-2025学年人教精通版(2024)英语三年级下册
- 2025年版中等职业教育专业教学标准 710205 大数据技术应用
- 2025年河南省郑州市九年级中考一模数学试题 (原卷版+解析版)
评论
0/150
提交评论