




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题02整式与因式分解
考情聚焦
课标要求考点考向
考向一单项式与多项式
1.会把具体数代人代数式进行计算。
2了解整数指数嘉的意义和基本性质。考向二同类项
整式
3,理解整式的概念,掌握合并同类项和去括号的法则。
考向三整式的加减
4,能进行简单的整式加减运算,能进行简单的整式乘法运
算。考向四整式的乘除
222
5.理解乘法公式(a+b)(a-b尸a?-b2,(a±b)=a±2ab+b,了解公考向五整式的混合运算
式的几何背景,能利用公式进行简单的计算和推理。
因式
考向一提公因式法因式分解
6.能用提公因式法、公式法进行因式分解。
分解
考向二公式法因式分解
真题透视/
考点一整式
A考向一单项式与多项式
1.(2024•吉林长春•中考真题)单项式的次数是_____.
【答案】3
【分析】此题考查单项式有关概念,根据单项式次数的定义来求解,解题的关键是需灵活掌握单项式的系
数和次数的定义,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.
【详解】单项式的次数是:2+1=3,
故答案为:3.
2.(2024•江西・中考真题)观察。,/,下,“4,,根据这些式子的变化规律,可得第100个式子为
【答案】a100
【分析】此题考查了单项式规律探究.分别找出系数和次数的规律,据此判断出第〃个式子是多少即可.
【详解】解:,力,/,/,.「
.•.第〃个单项式的系数是1;
•.•第1个、第2个、第3个、第4个单项式的次数分别是1、2、3、4,,
二第"个式子是.
第100个式子是/°.
故答案为:储.
3.(2024・重庆・中考真题)已知整式“:%/+1H+ClyX+旬,其中%氏T,…,/为自然数,%为正整
数,且〃++4-1+,••+%+%=5.下列说法:
①满足条件的整式/中有5个单项式;
②不存在任何一个〃,使得满足条件的整式M有且只有3个;
③满足条件的整式M共有16个.
其中正确的个数是()
A.0B.1C.2D,3
【答案】D
【分析】本题考查的是整式的规律探究,分类讨论思想的应用,由条件可得,再分类讨论得到答案
即可.
【详解】解::…,小为自然数,。”为正整数,且"+%+3+--+4+伟=5,
0<n<4,
当〃=4时,贝[]4+%+%+%+%+=5,
••=1I=a?=q=6ZQ—0,
满足条件的整式有一,
当〃=3时z则3+/+%+"1+%=5,
.•.(%,2,%,/)=(2,0。0),(1,1,0,0),(1,0,1,0),(1,0,0,1),
满足条件的整式有:2x3,/+/,/+X,/+i,
当〃=2时,贝[]2+2+%+为=5,
(8,%,旬)=(3,0,0),(2,1,0),(2,0,1),(1,2,0),(1,0,2),(1,1,1),
满足条件的整式有:3x2,2x2+x,2X2+1,x2+2x,x2+2,x2+x+l;
当〃=1时,贝[]1+q+%=5,
.•.®,%)=(4,0),(3,1),(1,3),(2,2),
满足条件的整式有:4x,3x+l,x+3,2x+2;
当〃=0时,0+旬=5,
满足条件的整式有:5;
•••满足条件的单项式有:/,2d,3/,4x,5,故①符合题意;
不存在任何一个〃,使得满足条件的整式“有且只有3个;故②符合题意;
满足条件的整式M共有1+4+6+4+1=16个.故③符合题意;
故选D
A考向二同类项
i.判断同类项
标准:所含字母相同,且相同字母的指数也分别相等。
注意事项:同类项与系数的大小无关,与它们所含的字母顺序无关,所有常数项都是同类项。
2.合并同类项
要点:字母和字母的指数不变,只把系数相加减。
著查面度丁一同亲项南京叉
4.(2024•河南・中考真题)请写出2机的一个同类项:.
【答案】加(答案不唯一)
【分析】本题考查的是同类项的含义,根据同类项的定义直接可得答案.
【详解】解:2加的一个同类项为加,
故答案为:小
考查角度2合并同类项
5.(2024•西藏・中考真题)下列运算正确的是()
A.x-2x=xB.x(x+3)=f+3
236
C.(-2x)=-8xD.3x2-4x2=12x2
【答案】C
【分析】根据合并同类项、单项式乘以多项式、幕的乘方与积的乘方、单项式乘以单项式的运算法则逐项
判断即可得出答案.
【详解】解:A、x-2x=-x,故原选项计算错误,不符合题意;
B、X(X+3)=X2+3X,故原选项计算错误,不符合题意;
236故原选项计算正确,符合题意;
Cs(-2x)=-8x,
D、3x2-4x2=12x1故原选项计算错误,不符合题意;
故选:C.
【点睛】本题考查了合并同类项、单项式乘以多项式、幕的乘方与积的乘方、单项式乘以单项式,熟练掌
握运算法则是解此题的关键.
A考向三整式的加减
6.(2024・四川德阳・中考真题)若一个多项式加上必+3中-4,结果是3孙+2/-5,则这个多项式为.
【答案】/-I
【分析】本题考查整式的加减运算,根据题意"一个多项式加上V+3盯-4,结果是3孙+2丁-5〃,进行列
出式子:(3xy+2y2-5)-(y2+3xy-4),再去括号合并同类项即可.
【详解】解:依题意这个多项式为
(3xy+2俨-5)一(/+3xy-4)
—3xy+2y2—5—y2—3xy+4
=y2-i.
故答案为:/-1
7.(2024•重庆・中考真题)一个各数位均不为0的四位自然数M=时,若满足a+d=b+c=9,则称这
个四位数为〃友谊数〃.例如:四位数1278,・・・1+8=2+7=9,二1278是〃友谊数〃.若丽是一个友谊数〃,
且6"=c_6=l,则这个数为_________;若河=丽是一个“友谊数",设爪¥,且尸(")+=+一
913
是整数,则满足条件的M的最大值是_________.
【答案】34566273
【分析】本题主要考查了新定义,根据新定义得到a+d=b+c=9,再由6-a=c-6=l可求出a、b、c、d
的值,进而可得答案;先求出"=999,+坝+99,进而得到半尸=9,+8+誓殳,根据
止”是整数,得到研8+如并是整数,即如常是整数’则%+…是13的倍数,求
出。《8,再按照。从大到小的范围讨论求解即可.
【详解】解:・・•丽是一个''友谊数〃,
036
图1图2
b-a=c-b=l,
「・Z?=4,c=5,
••ci—3,d=61
,这个数为3456;
M=而是一个"友谊数",
M=1000。+100b+10c+d
二1000Q+1006+10(9-b)+9-a
=999〃+90b+99,
F(M)=^=llla+10b+ll,
.F(M)+ab+cd
13
llla+10b+ll+10a+b+10c+d
一13
_111。+106+11+10。+6+10R-b升9-a
―13
_120〃+b+110
13
117。+3a+b+104+6
13
八c3〃+6+6
=9Q+8+--------------
13
...F(M)+ab+cd是整数
13
,9a+8+即+6是整数,即为;;+6是整数,
•*-3a+b+6是13的倍数,
Va.b、c、d都是不为。的正整数,且a+d=b+c=9,
a<S,
...当。=8时,31<3a+/>+6<38,此时不满足3a+6+6是13的倍数,不符合题意;
当。=7时,2843a+6+6V35,此时不满足3a+6+6是13的倍数,不符合题意;
当。=6时,2543a+6+6W32,此时可以满足3a+6+6是13的倍数,即此时6=2,则此时d=3,c=7,
要使M最大,则一定要满足a最大,
•••满足题意的M的最大值即为6273;
故答案为:3456;6273.
A考向四整式的乘除
藕技可易镭易港
1.单项式与单项式相乘法则:将系数相乘作为积的系数,相同字母的嘉相乘,单独在一个单项式里的字母
连同它的指数作为积的一个因式。
2.单项式与多项式相乘法则:用单项式去乘多项式的每一项,再把所得的积相加。
3.多项式与多项式相乘法则:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
4.单项式除以单项式法则:把系数、同底数算分别相除后,作为商的因式;对于只在被除式里含有的字母,
则连同它的指数一起作为商的一个因式。
5.多项式除以单项式法则:用多项式的每一项分别除以单项式,再把所得的商相加。
考查角度1塞的运算
8.(2024・广东・中考真题)下列计算正确的是()
A.a1-a5=awB.a84-a2=a4C,—2a+54=7aD.(a?)—a10
【答案】D
【分析】本题主要考查了同底数幕乘除法计算,幕的乘方计算,合并同类项,熟知相关计算法则是解题的
关键.
【详解】解:A、/./=/,原式计算错误,不符合题意;
B、a^a2=a6,原式计算错误,不符合题意;
C、-2a+5a^3a,原式计算错误,不符合题意;
D、(4=/,原式计算正确,符合题意;
故选:D.
9.(2024・河北・中考真题)若a,6是正整数,且满足七…,则。与6的关系正
8个2a相加扑2“相乘
确的是()
A.a+3=8bB.3a=8bC,a+3=b8D.3a=8+6
【答案】A
【分析】本题考查了同底数幕的乘法,幕的乘方的运算的应用,熟练掌握知识点是解题的关键.
由题意得:8x20=(24)8,利用同底数幕的乘法,幕的乘方化简即可.
【详解】解:由题意得:8x2"=,y,
23x2a=284,
3+a=8b,
故选:A.
10.(2024・天津•中考真题)计算/的结果为.
【答案】X2
【分析】本题考查同底数幕的除法,掌握同底数幕的除法,底数不变,指数相减是解题的关键.
【详解】解:,
故答案为:%2.
考查角度2单项式乘单项式
11.(2024湖北•中考真题)2『3x?的值是()
A.5x2B.5x3C.6x2D.6x3
【答案】D
【分析】本题主要考查单项式与单项式的乘法.运用单项式乘单项式运算法则求出结果即可判断.
【详解】解:2x-3x2=6x3,
故选:D.
考查角度3单项式乘多项式
12.(2024•甘肃兰州•中考真题)计算:2。(。一1)一2。2=()
A.aB.-aC.laD.-2a
【答案】D
【分析】本题主要考查了整式的混合运算,先计算单项式乘以多项式,再合并同类项即可.
【详解】解:2a(a-1)-2/
=-2a-2a2
=—2a
故选:D.
考查角度4多项式乘多项式
13.(2024・山东威海・中考真题)因式分解:(x+2)(x+4)+l=.
【答案】(x+3)2
【分析】本题主要考查了用完全平方公式分解因式,先按照多项式乘以多项式展开,然后利用完全平方公
式分解因式即可.
【详解】解:卜+2)(尤+4)+1
=+4x+2x+8+1
=x2+6x+9
=(x+3)z
故答案为:(x+3)2.
考查角度5平方差公式
14.(2024•上海•中考真题)计算(a+b)S-a)=.
【答案】及-£
【分析】根据平方差公式进行计算即可.
【详解】解:[a+b)(b-a)
=(b+a)(b-a)
=b2—a2,
故答案为:
【点睛】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.
考查角度5完全平方公式
15.(2024•黑龙江大庆•中考真题)已知a+工=而,则/+上的值是___________
aa
【答案】3
【分析】根据a+工=6,通过平方变形可以求得所求式子的值.
a
【详解】解:a+工=",
a
...-I----=3,
a~
故答案为:3.
【点睛】本题考查分式的化简求值,解答本题的关键是熟练掌握完全平方公式.
A考向五整式的混合运算
16.(2024湖南长沙•中考真题)先化简,再求值:2"-〃也"-2)+(加+3)(〃-3),其中加=g.
【答案】4m-9;1
【分析】本题考查整式的混合运算及其求值,先根据整式的混合运算法则化简原式,再代值求解即可.
[详解]解:2m-m(m-2)+(m+3)(m-3)
=2m一加2+2m+m2-9
=4m-9.
当加=g时,原式=4xg-9=10-9=l.
考点二因式分解
A考向一提公因式法因式分解
17.(2024浙江•中考真题)因式分解:/-7。=
【答案】a("7)
【分析】本题考查了提公因式法因式分解,先提公因式。是解题的关键.
【详解】解:/-74=4(〃-7).
故答案为:-7).
18.(2024•江苏徐州•中考真题)若加〃=2,"〃=1,贝M弋数式一机/的值是________.
【答案】2
【分析】本题考查代数式求值.先将代数式进行因式分解,然后将条件代入即可求值.
【详解】解:..•机〃=2,m-n=],
m2n—mn2—w)=2xl=2,
故答案为:2.
A考向二公式法因式分解
19.(2024・西藏・中考真题)分解因式:尤2_4尤+4=.
【答案】(x-2)2/(2r)2
【分析】本题考查了分解因式,利用完全平方公式分解即可,熟练掌握完全平方公式是解此题的关键.
【详解】解:X2-4X+4=(X-2)2,
故答案为:(x-2)2.
20.(2024・四川凉山•中考真题)已知=12,且a-6=-2,则〃+6=.
【答案】-6
【分析】本题考查了因式分解的应用,先把片-〃=12的左边分解因式,再把。-6=-2代入即可求出。+6的
值.
【详解】解:“3=12,
(a+b)(a-b)=12,
a—b=—2,
••a+b=-6.
故答案为:-6.
21.(2024・陕西・中考真题)先化简,再求值:(x+4+x(x-2y),其中x=l,片-2.
【答案】2/+/,6
【分析】本题考查了整式的混合运算以及求值.根据完全平方公式和单项式乘以多项式法则进行运算,再
合并同类项,最后代入即可求解.
【详解】解:(x+y),x(x-2y)
=x2+2xy+>2+f_2xy
=2x2+y2;
当x=l,歹=-2时,
原式=2x『+(_2『=2+4=6.
_.bc
22.(2024福建・中考真题)已知实数。,6,c,加,〃满足3m+〃=-,mn=-.
aa
⑴求证:。一⑵C为非负数;
(2)若。也c均为奇数,机,〃是否可以都为整数?说明你的理由.
【答案】⑴证明见解析;
(2)私〃不可能都为整数,理由见解析.
【分析】本小题考查整式的运算、因式分解、等式的性质等基础知识:考查运算能力、推理能力、创新意
识等,以及综合应用所学知识分析、解决问题的能力.
(1)根据题意得出6=a(3"+〃),c=mw,进而计算,根据非负数的性质,即可求解;
(2)分情况讨论,①私〃都为奇数;②机,"为整数,且其中至少有一个为偶数,根据奇偶数的性质结合
已知条件分析即可.
bc
【详解】(1)解:因为3%+〃=—"〃=一,
aa
所以。=a(3m+n^,c=amn.
贝[Jb2-\2ac-[a(3m+w)]2-12a2mn
=a1(9m2+6mn+»21-12a~mn
=a2(9m2-6mn+w2)
=«2(3m-M)2.
因为。,私〃是实数,所以/(3机-”)2NO,
所以12农为非负数.
(2)加,〃不可能都为整数.
理由如下:若加,〃都为整数,其可能情况有:①机,〃都为奇数;②肛〃为整数,且其中至少有一个为偶数.
①当见〃都为奇数时,则3加+〃必为偶数.
又3机+〃=。,所以b=a(3机+”).
a
因为。为奇数,所以。(3机+〃)必为偶数,这与b为奇数矛盾.
②当加,〃为整数,且其中至少有一个为偶数时,则加〃必为偶数.
c
又因为加〃=一,所以c=0加”.
a
因为。为奇数,所以。加〃必为偶数,这与。为奇数矛盾.
综上所述,私〃不可能都为整数.
23.(2024・安徽•中考真题)数学兴趣小组开展探究活动,研究了"正整数N能否表示为/-/(x,y均为
自然数)”的问题.
⑴指导教师将学生的发现进行整理,部分信息如下(〃为正整数):
N奇数4的倍数
1=12-024=22-02
3=22-128=32-12
表小结果
5=32-2212=42-22
7=42-3216=52-32
9=52-4220=62-42
LL
一般结论2/7-1=w2-(«-1)24n=______
按上表规律,完成下列问题:
(i)24=()2_()2;
(ii)4〃=;
(2)兴趣小组还猜测:像2,6,10,14,…这些形如4〃-2(〃为正整数)的正整数N不能表示为-(为了均
为自然数).师生一起研讨,分析过程如下:
假设4"-2=--J?,其中x,了均为自然数.
分下列三种情形分析:
①若X,y均为偶数,设X=2左,y=2机,其中总加均为自然数,
则/_/=但左『_(2M2=4e一加2)为4的倍数.
而4〃-2不是4的倍数,矛盾.故X,V不可能均为偶数.
②若X,,均为奇数,设x=2左+1,y=2m+l,其中怎加均为自然数,
则X?-/=Q左+-(2m+=为4的倍数.
而4〃-2不是4的倍数,矛盾.故X,V不可能均为奇数.
③若x,了一个是奇数一个是偶数,贝心2一式为奇数.
而4〃-2是偶数,矛盾.故方>不可能一个是奇数一个是偶数.
由①②③可知,猜测正确.
阅读以上内容,请在情形②的横线上填写所缺内容.
【答案】(1)(i)7,5;(ii)(n+l)2-(«-l)2;
(2)4(42-m2+k-m^
【分析】(1)(i)根据规律即可求解;(五)根据规律即可求解;
(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;
本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.
【详解】(1)(i)由规律可得,24=72-52,
故答案为:7,5;
(ii)由规律可得,4〃=(“+1)2-(〃-,
故答案为:5+1)2-(-1)2;
(2)解:假设4"-2=#-/,其中X,「均为自然数.
分下列三种情形分析:
①若X,V均为偶数,设x=2左,k2加,其中总加均为自然数,
则一一r=Q月2一(2班=4仔一苏)为4的倍数
而乐-2不是4的倍数,矛盾.故X,了不可能均为偶数.
②若X,>均为奇数,设x=2左+1,y=2加+1,其中左,机均为自然数,
贝[]x2_y2=(2左+1)2—(25+1)2=4(严一〃,+后一〃2)为4的倍数.
而4〃-2不是4的倍数,矛盾.故X,V不可能均为奇数.
③若X,了一个是奇数一个是偶数,则为奇数.
而4〃-2是偶数,矛盾.故X,V不可能一个是奇数一个是偶数.
由①②③可知,猜测正确.
故答案为:^{k2-m2+k-m).
新题例I
一、选择题
1.(2024•广西・模拟预测)若"6-c="(),则括号中应填入()
A.b-cB.—b+cC.bcD.—b—c
【答案】C
【分析】本题主要考查了添括号,添括号时,若括号前是,添括号后,括号里的各项都不改变符号;若
括号前是,添括号后,括号里的各项都改变符号,据此求解即可.
【详解】解:a-b-c=a-(b+c),
故选:C.
2.(2024•河南郑州•模拟预测)给出下列判断:①在数轴上,原点两旁的两个点所表示的数都互为相反数;
X2x
②多项式3xy2-4x3y+12是三次三项式;③任何正数都大于它的倒数;④石=布+1变为30x=100x+15利
用了等式的基本性质.其中正确的说法有()
A.0个B.1个C.2个D.3个
【答案】B
【分析】本题主要考查相反数的概念、数轴的基本概念、等式的基本性质、单项式与多项式的基本概念以
及倒数的概念。
根据相反数,可判断①,根据多项式的项、次数,可判断②,根据有理数的大小比较,可判断③,根据
等式的性质,可判断④,
【详解】解;①只有符号不同的两个数互为相反数,故①错误;
②多项式3孙2-4x3y+12是四次三项式,故②错误;
③小于1的正数小于它的倒数,故③错误;
④布=布+1变为30x=100x+15利用了等式的基本性质,故④正确;
故选:B.
3.(2024河南一模)在学习数与代数领域知识时,小明对代数式做如图所示的分类,下列选项符合▲的
是()
厂「单项式——例如:2。
一整式T
有理式4L多项式——例如:▲
(无理式一例如:而F
3a+bI----八,
A.B.---C.y/a+bD.lab
a+b3
【答案】B
【分析】本题考查代数式的分类,根据多项式的定义求解即可.
3
【详解】A.一是分式,故A选项不符合题意;
a+b
B.一是多项式,故B选项符合题意;
C.5法是无理式,故C选项不符合题意;
D2ab是单项式,故D选项不符合题意;
故选:B.
4.(2024云南•模拟预测)观察下列按一定规律排列的〃个数:x,3x2,5尤3,7x4,……,按照上述规律,
第9个单项式是()
A.9x9B.17x9C.17x10D.19x9
【答案】B
【分析】本题考查单项式中的规律问题,观察已有单项式,得到第"个单项式为:(2"-1)式,进而求出第9
个单项式即可.
【详解】解:观察已有单项式可知:第“个单项式为:,
.•.第9个单项式是:17/;
故选B.
5.(2024•云南•模拟预测)下列命题正确的是()
A.对角线相等且互相垂直平分的四边形是正方形
B.“水涨船高”是随机事件
C.单项式2x/的次数是2
D,一元二次方程X2+X+3=0有两个不相等的实数根
【答案】A
【分析】本题考查了正方形的判断定理,随机事件与必然事件,单项式的次数,根的判别式,运用相关知
识定理一一判断即可.
【详解】解:A、对角线相等且互相垂直平分的四边形是正方形,正确,符合题意;
B、“水涨船高”是随机事件,错误,"水涨船高"是必然事件,选项不符合题意;
C、单项式2孙2的次数是2,错误,单项式2x「的次数是3,选项不符合题意;
D、一元二次方程V+x+3=0有两个不相等的实数根,A=12-4X3<0,错误,选项不符合题意;
故选:A.
6.(2024河北唐山•三模)与3952+2x395x5+52相等的是()
A.(395-5『B,(395+5)(395-5)
C.(395+5)2D.(395+10)2
【答案】C
【分析】此题考查完全平方公式进行因式分解,根据完全平方公式因式分解即可得答案.
【详解】解:3952+2x395x5+5。=(395+5『,
故选:C.
7.(2024•河北•模拟预测)下列运算中,与2/6.(一运算结果相同的是()
A.2b-(2ab『B.-Sa2+b3C.(-2a)2-ft3D.-(2“为?
【答案】A
【分析】本题考查了同底数幕相乘、幕的乘方、合并同类项、积的乘方,根据同底数幕相乘、幕的乘方、
合并同类项、积的乘方的运算法则逐项判断即可得出答案,熟练掌握以上知识点并灵活运用是解此题的关
键.
【详解】解:2a2b-(-2b)2=2a2b-4b2=Sa2b3,
A、2b\2ab)2=2b-4a2b2=8a2b3,故A符合题意;
B、-8/和3不是同类项,故不能直接相加,故B不符合题意;
2
C、(-2a)方=4/./=得/,故c不符合题意;
D、_(2/6丫=,故D不符合题意;
故选:A.
8.(2024•浙江•模拟预测)小江去超市购物,打算购买一件商品,在结账时遇到了问题(如图),你选择
的办法是()
小江:这件商品正住、
0举行促铜活动,可以
打八折,我F里还行
1.张2。元的优里分.
你M过计算.告诉
、我最苦我的办法叫?)
A.先打折,再用券B.先用券,再打折
C.都一样D.无法确定,取决于商品价格高低
【答案】A
【分析】本题考查了列代数式,整式加减的应用.设商品标价为X元,分别得到先打折,再用券以及先用券,
再打折需要支付的费用,再比较即可求解.
【详解】解:设商品标价为尤元,
先打折,再用券需要支付0.8尤-20元,
先用券,再打折需要支付0・8(x-20)元,
0.8x-20-0.8(x-20)=-4<0,
即先打折,再用券比先用券,再打折更省钱,
故选:A.
9.(2024•黑龙江哈尔滨•模拟预测)现定义一种新运算"派”,对任意有理数〃?、〃都有加※〃=机〃(机-”),
贝[](0+6必(°-6)=()
A.lab1-lb1B.2a2b-2b3C.2ab2+2b2D.lab-lab2
【答案】B
【分析】该题主要考查了整式的混合运算,解题的关键是根据新定义列出等式.
原式利用题中的新定义计算即可得到结果.
【详解】解:根据题中的新定义得:(。+9※("3
=(Q+6)(Q-6)[(Q+6(a-b^
=2b(a+b)(a-b)
=2a2b-2b3,
故选:B.
10.(2024・重庆模拟预测)有„个依次排列的算式:第1项是小,第2项是/+2。+1,用第2项减去第
1项,所得之差记为4,将仇加2记为“,将第2项与与相加作为第3项,将4加2记为4,将第3项与4
相加作为第4项,......,以此类推.某数学兴趣小组对此展开研究,得到3个结论①&=2。+9;②若第6
项与第5项之差为4057,贝U。=2024;③当〃=左时,伪+仇+4+"+…+4=2成+淤;其中正确的个数是
()
A.0B.1C.2D.3
【答案】D
【分析】本题主要考查了完全平方公式,数字类的规律探索,整式的加减计算,根据所给计算方式,依次
求出第1项,第2项,第3项,…,及仇,仇,仇,…,发现规律即可解决问题.
【详解】解:由题知,第1项为:/,
第2项为:a2+24+1=(4+1丫,
.•.仇=(a+l)2-/=2a+l,
二.仇=4+2=2a+3]
二第3项为:/+2。+1+2“+3=(。+2『,Z>3^b2+2=2a+5,
第4项为:/+4a+4+2a+5=(a+3,
,,,,
以此类推,
第〃项为:(a+〃T)2,"=2。+2"-1(〃为正整数).
当〃=5时,&=2。+9.故①正确.
第6项与第5项之差可表示为:(a+5)2-(a+盯,
(a+5)2-(a+4『=4057,
解得。=2024.故②正确.
当力=左时,
瓦+Z)2+4+••,+4
—2。+1+2。+3+2a+5+,,,+2。+2k—1
=2成+M-2I)
2
=2ak+k1.故③正确.
故选:D.
11.(2024・湖南•模拟预测)下列运算正确的是()
A.a6=a3B.(a-2)=/—4
c.(-2m2)3=-8m6D.2ab+3a2b=5ab2
【答案】c
【分析】本题考查整式的运算,根据同底数幕的除法,完全平方公式,积的乘方,幕的乘方,合并同类项
的法则,逐一进行判断即可.
【详解】解:A、原选项计算错误,不符合题意;
B、(a-2『=/-4a+4,原选项计算错误,不符合题意;
C、(-2/丫=-8/,原选项计算正确,符合题意;
D、2a6,3/6不能合并,原选项计算错误,不符合题意;
故选C.
12.(2024・重庆•一模)在多项式F-3+C)-"(其中。>6>c>d)中,对每个字母及其左边的符号(不包
括括号外的符号)称为一个数,即:-。为"数1",b为"数2:+C为“数3","为"数4”,若将任意两个数
交换位置,后得到一个新多项式,再写出新多项式的绝对值,这样的操作称为对多项式+c)-"的"绝
对换位变换”,例如:对上述多项式的“数3"和"数4"进行"绝对换位变换”,得到卜。-@-")+。],将其化简后
结果为a+6-c-",….下列说法:
①对多项式的"数1"和"数2"进行"绝对换位变换”后的运算结果一定等于对“数3"和"数4"进行"绝对换位变
换”后的运算结果;
②不存在"绝对换位变换”,使其运算结果与原多项式相等;
③所有的“绝对换位变换"共有5种不同运算结果.
其中正确的个数是()
A.0B.1C.2D.3
【答案】B
【分析】本题考查了整式的加减运算,对于新定义的理解及绝对值的性质的应用是解题关键.按照所提供
的运算,将所有存在的结果计算,即可解题.
【详解】解:对多项式的"数1"和"数2"进行"绝对换位变换”后的运算,也一(-a+c)-1/|—6Z+Z7-c-df
正确;
对多项式的"数1"和"数3"进行"绝对换位变换”后的运算,|c-(b-a)-d|="b+c-d,
对多项式的“数1"和"数4〃进行“绝对换位变换”后的运算,卜d_(b+c)_“|=a+b+c+6^_a_6_c_d
对多项式的“数2"和"数3"进行"绝对换位变换”后的运算,卜”(c+b)-4=a+5+c+d或Fi—V对多
项式的“数2"和"数4"进行"绝对换位变换”后的运算,\-a-[-d+c)+b\=a-b+c-d,
综上共4种结果,故③错误;
其中存在“绝对换位变换",使其运算结果与原多项式相等,故②错误.
故选:B.
二、填空题
13.(2024甘肃•三模)如果-4J了1与3凸,是同类项,那么"=.
【答案】2
【分析】本题主要考查了同类项的定义,所含字母相同,相同字母的指数也相同的单项式叫做同类项,据
此解答即可.
【详解】解:根据题意得:«-1=1,
:.n=2,
故答案为:2.
14.(2024福建厦门•二模)已知,则(2x+l『-3x(x+l)的值为.
【答案】2
【分析】本题考查整式的混合运算、代数式求值,熟练掌握运算法则,利用整体代入思想求解是解答的关
键.先根据x-4=T得出V+x=l,然后利用完全平方公式、单项式乘多项式化简原式,再整体代值求解
X
即可.
【详解】解:,
X
•,X2+X—1/
(2x+l『-3x(x+l)
=4x~+4x+1—3厂—3x
=x~+x+1
=1+1
=2.
15.(2024・湖北•一模)我国南宋时期数学家杨辉于1261年写下的《详解九章算法》,书中记载的图表给
出了伍+6)"展开式的系数规律.
1.......(。+6)。=1
11.......(a+bV=a+b
121.......(。+6)2=〃+2/+62
1331.......(a+b')3=a3+3a2b+3ab2+b3
当代数式X3-9x2+27X-27的值为8时,贝叶的值为.
【答案】5
【分析】此题考查了多项式中乘法规律问题.观察题中的图表,表示出(“+6)3,根据已知代数式的值为8,
确定出x的值即可.
【详解】解:根据题意得:(a+b)3=a3+3a2b+3ab2+b3,
x3—9%2+27x—27
=x3+3x2-(-3)+3x-(-3)2+(-3)3
=(x-3)3,
二.(X-3)3=8,
开立方得:x-3=2,
解得:x=5.
故答案为:5.
16.(2024・湖南•模拟预测)某班开展图书交换阅读活动.甲、乙、丙三名同学有相同数量的图书、甲同学
借给乙同学4本,丙同学借给乙同学2本,一段时间后,他们约定:乙同学须将手中甲、丙两名同学现有
图书数量总和的一半,借给甲同学,而后乙同学手上剩余图书的数量为本.
【答案】9
【分析】本题主要考查了整式加减的意义,设一开始三名同学各有x本图书,则甲、丙借完图书给乙后乙
有图书(x+4+2)本,而甲、丙剩余图书之和为(x-4+x-2),再根据题意列式求解即可.
【详解】解:设一开始三名同学各有x本图书,
Y_A.Y—D
由题意得,乙同学手上剩余图书的数量为X+4+2-----------------=x+6-(x-3)=9本,
故答案为:9.
三、解答题
17.(2024河北•模拟预测)如图1是一个长为m,宽为n的矩形(加>〃).用7张图1中的小矩形纸片,
按图2的方式无空隙不重叠地放在大矩形内,未被覆盖的部分用阴影表示.若大矩形的长是宽的弓.
m
图1图2
⑴求m与H的关系;
(2)若图2中,大矩形的面积为18,求阴影部分的面积.
【答案】⑴加=4〃
,26
(2)T
【分析】本题考查列代数式、整式的加减、多项式乘多项式、代数式求值,看懂图形,正确列出代数式是
解答的关键.
(1)先根据图形,用叭〃表示出矩形的长、宽,再根据长和宽的关系可得结论;
(2)根据图形,用叭〃表示出大矩形的面积,进而求得1,进而可得阴影面积的值.
【详解】(1)解:由题意,大矩形的长为机+5〃,宽为摩+2〃,
3
;大矩形的长是宽的5,
m+5n=—(m+2z?)t
化简,得"2=4";
(2)解::大矩形的面积为(加+2〃乂"7+5〃
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店营销经理劳动合同范本
- 肇庆市实验中学高三生物三四五高效课堂教学设计:自由组合定律专题
- 西南财经大学天府学院《基本体操(1)》2023-2024学年第一学期期末试卷
- 四川省广安市代市中学2025届初三下学期教学质量检测试题模拟考试数学试题含解析
- 山东建筑大学《文学与大众文化》2023-2024学年第二学期期末试卷
- 山西工程技术学院《药物分析Ⅱ》2023-2024学年第一学期期末试卷
- 上海外国语大学《语言与社会》2023-2024学年第二学期期末试卷
- 江西工商职业技术学院《数据挖掘与人工智能》2023-2024学年第二学期期末试卷
- 上海市上海民办张江集团校2024-2025学年中考物理试题原创模拟卷(十)含解析
- 天津仁爱学院《报纸采编实战训练》2023-2024学年第二学期期末试卷
- 实验室生物安全程序文件
- 企业融资方式介绍课件
- 药品生产监督管理办法
- 幼儿园幼儿小篮球活动体能测试表
- 福建省普通高中学生综合素质学期评价表
- 五年级下册数学课件 -4.1 用数对确定位置 ︳青岛版 (共20张PPT)
- 柏拉图分析案例
- 二衬带模注浆施工方案
- 《英语委婉语与忌语》PPT课件.ppt
- 调查问卷设计-课件PPT
- 照金参观学习心得
评论
0/150
提交评论