




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AIdisruptionis
drivinginnovationinon-deviceinference
HowtheproliferationandevolutionofgenerativemodelswilltransformtheAIlandscapeandunlockvalue.
February2025
SnapdragonandQualcommbrandedproductsareproductsofQualcommTechnologies,Inc.and/oritssubsidiaries.
2
Contents
Executivesummary 3
QualityAImodelsarenowabundantanda<ordable 4
Innovationsboostmodelqualityandreducedevelopmenttimeandcost 4
Smallmodelsachievebigcapabilitiesattheedge 5
TheeraofAIinferenceinnovationishere 7
QualcommissettobealeaderintheAIinferenceera 8
Expandingacrossallkeyedgesegments 9
Mobile 9
PCs 10
Automotive 10
IndustrialIoT 11
Networking 11
Conclusion 11
3
Executivesummary
TheintroductionofDeepSeekR1,acutting-edgereasoningAImodel,hascausedripplesthroughoutthetechindustry.That’sbecauseitsperformanceisonparwithorbetterthanstate-of-the-artalternatives,disruptingtheconventionalwisdomaroundAIdevelopment.
Thispivotalmomentispartofabroadertrendthatunderscorestheinnovationincreatinghigh-qualitysmalllanguageandmultimodalreasoningmodels,andhowthey’repreparingAIforcommercialapplicationsandon-deviceinference.Thefactthatthesenewmodelscanrunondevicesacceleratesscaleandcreatesdemandforpowerfulchipsattheedge.
Drivingthisshiftarefourmajortrendsthatareleadingtoadramaticimprovementinthequality,performance,ande<iciencyofAImodelsthatcannowrunondevice:
•Today’sstate-of-the-artsmallerAImodelshavesuperiorperformance.NewtechniqueslikemodeldistillationandnovelAInetworkarchitecturessimplifythedevelopmentprocesswithoutsacrificingquality,allowingnewmodelsto
outperformlargeronesfromayearago,whichcouldonlyoperateonthecloud.
•Modelsizesaredecreasingrapidly.State-of-the-artquantizationandpruning
techniquesallowdeveloperstoreducethesizeofmodelswithnomaterialimpactinaccuracy.
•Developershavemoretoworkwith.Therapidproliferationofhigh-qualityAI
modelsmeansfeaturesliketextsummarization,codingassistantsandlive
translationarecommonindeviceslikesmartphones,makingAIreadyfor
commercialapplicationsatscaleacrosstheedge.
•AIisbecomingthenewuserinterface.PersonalizedmultimodalAIagentswillsimplifyinteractionsandproficientlycompletetasksacrossvariousapplications.
QualcommTechnologiesisstrategicallypositionedtoleadandcapitalizeonthetransitionfromAItrainingtolarge-scaleinference,aswellastheexpansionofAIcomputational
processingfromthecloudtotheedge.Thecompanyhasanextensivetrackrecordin
developingcustomcentralprocessingunits(CPUs),neuralprocessingunits(NPUs),
graphicsprocessingunits(GPUs),andlow-powersubsystems.Thecompany’s
collaborationwithmodelmakers,alongwithtools,frameworks,andSDKsfordeployingmodelsacrossvariousedgedevicesegments,enablesdeveloperstoacceleratethe
adoptionofAIagentsandapplicationsattheedge.
TherecentdisruptionandreassessmentofhowAImodelsaretrainedvalidatesthe
imminentAIlandscapeshifttowardslarge-scaleinference.Itwillcreateanewcycleof
innovationandupgradeofinferencecomputingattheedge.Whiletrainingwillcontinueinthecloud,inferencewillbenefitfromthescaleofdevicesrunningonQualcomm®
technologyandcreatedemandformoreAI-enabledprocessorsattheedge.
4
QualityAImodelsarenowabundantanda9ordable
Innovationsboostmodelqualityandreducedevelopmenttimeandcost
AIhasreachedthepointwherethedropinthecostoftrainingAImodels,combinedwithopen-sourcecollaboration,ismakingthedevelopmentofhigh-qualitymodelsaccessibletomorepeopleandorganizations.
Thisshiftisdrivenbyvarioustechnicaladvancements.Usageoflongercontextlength,
alongwithsimplificationofsomeofthetrainingsteps,savescomputationalcosts.Newernetworkarchitecturesrangingfrommixture-of-experts(MoE)tostate-spacemodels(SSM)arepushingtheboundaryofwhatcanbeaccomplishedwithreducedcomputational
overheadandpowerconsumption.
NewerAImodelsalsointegrateadvancedmethodssuchaschain-of-thoughtreasoningandself-verification,enablingthemtoperformwellacrossvariouschallengingdomainslikemathematics,coding,andscientificreasoning.
Distillationisakeytechniqueinthedevelopmentofcapablesmallmodels.Itallowslargemodelsto"teach"smallermodels,transferringknowledgewhilemaintainingaccuracy.Theuseofdistillationhasledtoasurgeinsmallerfoundationmodels—manyofthemfine-
tunedforspecializedtasks.
Thepowerofdistillationisexemplifiedinfigure1.ThispresentsaverageLiveBenchresultscomparingtheLlama3.370BmodelwithitsdistilledDeepSeekR1counterpart.Thechartshowshowdistillationsignificantlyenhancesperformanceinreasoning,coding,and
mathematicstasksforthesamenumberofparameters.
5
Figure1:LiveBenchAIaveragebenchmarkresultscomparingMetaLlama70Bmodelwithitsdistilled
counterpartbyDeepSeek.Source:LiveBench.ai,Feb.2025.
Smallmodelsachievebigcapabilitiesattheedge
Smallermodelsareapproachingthequalityoflargefrontiermodelsduetodistillationandothertechniquesdescribedabove.Figure2showsbenchmarksfortheDeepSeekR1
distilledmodelscomparedtoleading-edgealternatives.DeepSeek-distilledversions
basedonQwenandLlamamodelsshowareasofsignificantsuperiority,particularlyintheGPQAbenchmark–achievingsuperiororsimilarscorescomparedtostate-of-the-art
modelssuchasGPT-4o,Claude3.5Sonnet,andGPT-o1mini.GPQAisacriticalmetricbecauseitinvolvesdeep,multi-stepreasoningtosolvecomplexqueries,whichmanymodelsfindchallenging.
6
Figure2:Mathematicandcodingbenchmarks.Source:DeepSeek,Jan.2025.
ManypopularmodelfamiliesincludingDeepSeekR1,MetaLlama,IBMGranite,Mistral
Ministralfeaturesmallvariantswhichoverdeliverintermsofperformanceand
benchmarksforspecifictasks,regardlessoftheirsize.Thereductionoflarge,foundationalmodelsintosmaller,efficientversionsenablesfasterinference,smallermemoryfootprintandlowerspowerconsumption–allwhilemaintainingahighbaronperformance,allowingdeploymentofsuchmodelswithindeviceslikesmartphones,PCs,andautomobiles.
Furtheroptimizations,likequantization,compressionandpruninghelpreducemodel
sizes.Quantizationlowerspowerconsumptionandspeedsupoperationsbyreducing
precisionwithoutsignificantlysacrificingaccuracy,whilepruningeliminatesunnecessaryparameters.
Thesetechnicaldevelopmentshaveledtoaproliferationofhigh-qualitygenerativeAI
models.AccordingtodatacompiledbyEpochAI(Figure3),morethan75%oflarge-scaleAImodelspublishedin2024featurelessthan100billionparameters.
7
Figure3:Numberoflarge-scaleAImodelspublishedbyyear,categorizedbynumberofparameters.Source:
EpochAI,Jan.2025.
TheeraofAIinferenceinnovationishere
Theabundanceofhigh-quality,smallermodelsisbringingrenewedattentiontoinferenceworkloads–whichiswhereapplicationsandservicesmakeuseofthemodelstoprovidevaluetobusinessesandconsumers.
QualcommTechnologieshasworkedontheoptimizationofnumerousAImodelsto
supportthecommercializationofthenewgenerationofAI-orientedCopilot+PCs.
Similarly,thecompanyhascollaboratedwithOEMssuchasSamsungandXiaomiinthelaunchofflagshipsmartphonesequippedwithmanyAI-enabledfeatures.
TheproliferationofAIinferencingcapabilitiesacrossdeviceshasenabledthecreationofgenerativeAIapplicationsandassistants.Documentsummarization,AI-imagegenerationandediting,andreal-timelanguagetranslationarenowcommonfeatures.CameraappsleverageAIforcomputationalphotography,objectrecognitionandreal-timescene
optimization.
Nextupisthedevelopmentofmultimodalapplicationswhichcombinemultipletypesofdata—text,vision,audioandsensorinput—todeliverricher,morecontext-awareand
personalizedexperiences.TheQualcommAIEnginecombinesthecapabilitiesofcustom-builtNPUs,CPUsandGPUstooptimizesuchtaskson-device,enablingAIassistantsto
switchbetweencommunicationmodesandgeneratemultimodaloutputs.
AgenticAIispositionedattheheartofthenextgenerationofuserinterfaces.AIsystems
8
arecapableofdecision-makingandtaskmanagementbypredictinguserneedsand
proactivelyexecutingcomplexworkflowswithindevicesandapplications.QualcommTechnologies’emphasisonefficient,real-timeAIprocessingallowstheseagentsto
functioncontinuouslyandsecurelywithinthedevices,whilerelyinguponapersonal
knowledgegraphthataccuratelydefinestheuser’spreferencesandneeds,withoutanyclouddependency.Overtime,theseadvancementsarelayingthegroundworkforAItobecometheprimaryUI,withnaturallanguageandimage,videoandgesture-based
interactionssimplifyinghowpeopleengagewithtechnology.
Lookingahead,QualcommTechnologiesisalsopositionedfortheeraofembodiedAI,inwhichAIcapabilitiesareintegratedintorobotics.Byleveragingitsexpertiseininferenceoptimization,QualcommTechnologiesaimstopowerreal-timedecision-makingfor
robots,dronesandotherautonomousdevices,enablingpreciseinteractionsindynamic,real-worldenvironments.
WhilenumerousAImodelsaretrainedinthecloud,distilledsmallermodelsareavailableforoperationandrunondevicesoftenwithinweeksordays.Forexample,withinlessthanaweek,DeepSeekR1-distilledmodelswererunningon
PCs
and
smartphones
poweredbySnapdragon®platforms.
Deployinginferencewithindevicesaddressesimmediacythroughreducedlatency,
enhancesprivacy,reliesonlocaldatatoprovideadditionalcontextandenables
continuousfunctionalityofAIfeaturesandapplications.Italsoreducescostsforusersand/ordevelopersbyavoidingfeesassociatedwithcloudinferenceservices.AllofthiscreatesincentivesforsoftwareandserviceproviderstodeployAIinferenceattheedge.
QualcommissettobealeaderintheAIinferenceera
Asaleaderinon-deviceAI,QualcommTechnologiesisstrategicallypositionedtoadvancetheAIinferenceerawithitsindustry-leadinghardwareandsoftwaresolutionsforedge
devices.Thesesolutionsencompassbillionsofsmartphones,automobiles,XRheadsetsandglasses,PCs,industrialIoTdevices,andmore.
QualcommTechnologieshasalonghistoryofdevelopingcustomCPUs,NPUs,GPUsandlow-powersubsystems,which,whencombinedwithexpertiseinpackagingandthermal
design,formthefoundationofitsindustry-leadingsystem-on-chip(SoC)products.
TheseSoCsdeliverhigh-performance,energy-efficientAIinferencedirectlyon-device.Bytightlyintegratingthesecores,QualcommTechnologies’platformscanhandlecomplexAItaskswhilemaintainingbatterylifeandoverallpowerefficiency—criticalforedgeuse
cases.
TounlockthefullpotentialofAIonitsplatforms,QualcommTechnologieshasbuiltarobustAIsoftwarestackdesignedtoempowersoftwaredevelopers.TheQualcommAI
9
Stackincludeslibraries,SDKs,andoptimizationtoolsthatstreamlinemodeldeploymentandenhanceperformance.DeveloperscanleveragetheseresourcestoefficientlyadaptmodelsforQualcommplatforms,reducingtime-to-marketforAI-poweredapplications.QualcommTechnologies’developer-focusedapproachacceleratesinnovationby
simplifyingtheintegrationofcutting-edgeAIfeaturesintoconsumerandenterpriseproducts.
Lastly,thecompany’scollaborationwithAImodelmakersacrosstheglobeandits
provisionofservicesliketheQualcommAIHubarecentraltoitsstrategyforscalingAI
acrossindustries.OntheQualcommAIHub,inthreesimplesteps,adevelopercan1)pickamodelorbringtheirownmodelorcreateamodelbasedontheirdata;2)pickany
frameworkandruntime,writeandtesttheirAIappsonacloud-basedphysicaldevice
farm;and3)usetoolstodeploytheirappscommercially.TheQualcommAIHubsupportsmajorlargelanguageandmultimodalmodel(LLM,LMM)families,allowingdeveloperstodeploy,optimize,andmanageinferenceondevicespoweredbyQualcommplatforms.
Withfeatureslikepre-optimizedmodellibrariesandsupportforcustommodel
optimizationandintegration,QualcommTechnologiesenablesrapiddevelopmentcycleswhileenhancingcompatibilitywithdiverseAIecosystems.Thiscollaborativeapproach
strengthensQualcommTechnologies’positionasaleaderinenablingscalable,real-timeAIapplications.
Expandingacrossallkeyedgesegments
QualcommTechnologiesuseson-deviceAItosupportmanyindustries,unlocking
businessvalueandsupportingnewuserexperiences,allenabledbyenhanced
performance,efficiency,responsivenessandprivacybyprocessingAIlocallyondevices.
Mobile
Snapdragonmobileplatforms,suchasthelatestSnapdragon8elite,areadvancingthe
capabilitiesofon-deviceAIbyenablingseveralcutting-edgemultimodalgenerativemodelsandagenticAItooperatenativelyonsmartphones.AIhasenhancedsmartphonefeaturesacrossvariouscategoriessuchascommunicationimprovement,generativeimageeditingtools,personalization,andaccessibility.On-devicegenerativeAIisbeingutilizedto
developmoreintuitive,user-centricfeaturesandtoautomatetasksinmobiledevices.
ThistrendtowardsAI-drivenfunctionalitiesisevidentinthelatestflagshipsmartphonereleasesfrommajormanufacturersutilizingSnapdragonplatforms,includingSamsung,ASUS,Xiaomi,Oppo,Vivo,andHonor.
10
PCs
SnapdragonXSeriesplatformswereinstrumentalindefiningthenewcategoryofAIPCs,
withbest-in-classcustomNPUcoresthatwerebuiltfromground-upforhighperformance,energyefficientgenerativeAIinference.ThisNPUisturbo-chargingWindowsapps,addingnewfeatures,boostingperformance,andenhancingprivacyandbatterylife.Developers
canrungenerativeAIinferenceon-device,offeringcutting-edgeCopilot+PCfeatureswhichdebutedontheSnapdragonXSeries.
Popularthird-partyappslikeZoom,Affinity,DjayPro,CapCut,MoisesLive,and
BlackmagicDesign’sDaVinciResolvetakeadvantageoftheNPUtoofferspecificAI-poweredcapabilitiesonSnapdragonXSeriesplatforms.
Automotive
Snapdragon®DigitalChassis™solutionuseson-deviceAIinitscontext-awareintelligentcockpitsystemdesignedtoenhancevehiclesafetyanddriverexperience.Thissystem
leveragesadvancedcameras,biometricandenvironmentalsensors,andstate-of-the-artmultimodalAInetworkstoprovidereal-timefeedbackandfunctionalitytailoredtothe
driver'sstateandenvironmentalconditions.
Forautomateddrivingandassistancesystems,QualcommTechnologieshasdevelopedanend-to-endarchitecturewhichuseslargetrainingdatasets,fastre-trainingusingreal-worldandAI-augmenteddata,over-the-airupdates,andastate-of-the-artstackincludingmultimodalAImodelsandcausalreasoninginthevehicletohandlemodernautomated
drivingandassistancecomplexities.
Example:LLMAgentlistenstheconversationsinthecabin,onepassengermentionscoffee,
afterafewminsPOIshowsacoffeehouse,LLMAgentproposesastopforcoffee)
Perception-to-IVI
LLMAgent
(AIAssistant)
EnhancedARHUD
Perception
In-VehicleSensors
IntuitiveHMI
Driving
MultimodalLLM
DeepPoints,POI
PlanningProposals&DriverStatus
HumanDriver
Effectivesceneunderstandingandcognition
Decision
ADAS
ADSensors
Transformer
Tokenized
Environment
EnvironmentTokenization
Improvedspatialreasoningandreal-timeplanningcapabilities
Perception-to-ADAS
11
Figure4:Simplifiedin-vehicleAIsystemarchitecturetosupportintelligentcockpitandautonomousand
advanceddrivingassistance.Source:QualcommTechnologies,Jan.2025,
IndustrialIoT
ForindustrialIoTandenterpriseapplications,QualcommTechnologiesrecently
introduceditstheQualcomm®AIOn-PremApplianceSolution,anon-premisesdesktoporwall-mountedhardwaresolution,andQualcomm®AIInferenceSuite,asetofsoftwareandservicesforAIinferencingspanningfromnear-edgetocloud.
ThisedgeAIapproachallowssensitivecustomerdata,fine-tunedmodels,andinference
loadstoremainonpremises,enhancingprivacy,control,energyefficiency,andlow
latency.That’scriticalforAI-enabledbusinessapplicationssuchasintelligentmulti-
lingualsearch,customAIassistantsandagents,codegeneration,andcomputervisionforsecurity,safetyandsitemonitoring.
Networking
QualcommTechnologieshasintroducedanAI-enabledWi-Finetworkingplatform–the
Qualcomm®NetworkingProA7Elite.ThesolutionintegratesWi-Fi7andedgeAItoallow
accesspointsandrouterstorungenerativeAIinferenceonbehalfofconnecteddevicesinthenetwork.Itsupportsinnovativeapplicationsinareaslikesecurity,energymanagement,virtualassistants,andhealthmonitoringbyprocessingdataonthegatewayforenhancedprivacyandrea
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络兼职诈骗套路解析
- 2025年发电机行业发展趋势与市场前景分析
- 庐江小学网詹天佑
- 小满节气与环保行动
- Module10 Unit1 You should tidy your toys(教学设计)-2023-2024学年外研版(一起)英语五年级上册
- 探索色彩魔法
- 关于成立集成化智能计算平台公司可行性研究报告(范文模板)
- 城镇污水处理管道建设可行性研究报告
- 5G实训基地建设项目可行性研究报告(模板)
- 兼职教授聘用协议书
- 医院医疗设备管理课件
- 新一代无创产前筛查技术NIPT2.0临床应用策略专家共识
- 集团公司重大经营决策法律审核管理办法
- 上海市五年级数学上学期期中考试真题重组卷(沪教版)
- 3D打印模型辅助下的靶向治疗
- 网络舆情风险评估与预警
- 全国飞盘运动裁判法(试行)
- 地方病防治技能理论考核试题
- 浙江省土地整治项目预算定额
- 期刊编辑的学术期刊编辑规范考核试卷
- 北师大版四年级下册小数乘法竖式计算200题及答案
评论
0/150
提交评论