2025届上海市上南中学高考数学试题冲刺卷(一)_第1页
2025届上海市上南中学高考数学试题冲刺卷(一)_第2页
2025届上海市上南中学高考数学试题冲刺卷(一)_第3页
2025届上海市上南中学高考数学试题冲刺卷(一)_第4页
2025届上海市上南中学高考数学试题冲刺卷(一)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届上海市上南中学高考数学试题冲刺卷(一)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等比数列若则()A.±6 B.6 C.-6 D.2.已知复数满足,其中为虚数单位,则().A. B. C. D.3.如图,圆锥底面半径为,体积为,、是底面圆的两条互相垂直的直径,是母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点的距离等于()A. B.1 C. D.4.已知点(m,8)在幂函数的图象上,设,则()A.b<a<c B.a<b<c C.b<c<a D.a<c<b5.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为()A. B. C. D.6.如图,已知三棱锥中,平面平面,记二面角的平面角为,直线与平面所成角为,直线与平面所成角为,则()A. B. C. D.7.若,则()A. B. C. D.8.阅读下面的程序框图,运行相应的程序,程序运行输出的结果是()A.1.1 B.1 C.2.9 D.2.89.在满足,的实数对中,使得成立的正整数的最大值为()A.5 B.6 C.7 D.910.已知下列命题:①“”的否定是“”;②已知为两个命题,若“”为假命题,则“”为真命题;③“”是“”的充分不必要条件;④“若,则且”的逆否命题为真命题.其中真命题的序号为()A.③④ B.①② C.①③ D.②④11.设,是非零向量,若对于任意的,都有成立,则A. B. C. D.12.将函数的图象向左平移个单位长度,得到的函数为偶函数,则的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设的内角的对边分别为,,.若,,,则_____________14.实数满足,则的最大值为_____.15.在平面直角坐标系中,曲线在点处的切线与x轴相交于点A,其中e为自然对数的底数.若点,的面积为3,则的值是______.16.若x,y满足,则的最小值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(其中是自然对数的底数)(1)若在R上单调递增,求正数a的取值范围;(2)若f(x)在处导数相等,证明:;(3)当时,证明:对于任意,若,则直线与曲线有唯一公共点(注:当时,直线与曲线的交点在y轴两侧).18.(12分)已知函数,(其中,).(1)求函数的最小值.(2)若,求证:.19.(12分)已知函数f(x)=x-1+x+2,记f(x)(Ⅰ)解不等式f(x)≤5;(Ⅱ)若正实数a,b满足1a+120.(12分)已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.(1)求圆的方程;(2)设直线ax﹣y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;(3)在(2)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(﹣2,4),若存在,求出实数a的值;若不存在,请说明理由.21.(12分)已知变换将平面上的点,分别变换为点,.设变换对应的矩阵为.(1)求矩阵;(2)求矩阵的特征值.22.(10分)在多面体中,四边形是正方形,平面,,,为的中点.(1)求证:;(2)求平面与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据等比中项性质代入可得解,由等比数列项的性质确定值即可.【详解】由等比数列中等比中项性质可知,,所以,而由等比数列性质可知奇数项符号相同,所以,故选:B.【点睛】本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题.2、A【解析】

先化简求出,即可求得答案.【详解】因为,所以所以故选:A【点睛】此题考查复数的基本运算,注意计算的准确度,属于简单题目.3、D【解析】

建立平面直角坐标系,求得抛物线的轨迹方程,解直角三角形求得抛物线的焦点到圆锥顶点的距离.【详解】将抛物线放入坐标系,如图所示,∵,,,∴,设抛物线,代入点,可得∴焦点为,即焦点为中点,设焦点为,,,∴.故选:D【点睛】本小题考查圆锥曲线的概念,抛物线的性质,两点间的距离等基础知识;考查运算求解能力,空间想象能力,推理论证能力,应用意识.4、B【解析】

先利用幂函数的定义求出m的值,得到幂函数解析式为f(x)=x3,在R上单调递增,再利用幂函数f(x)的单调性,即可得到a,b,c的大小关系.【详解】由幂函数的定义可知,m﹣1=1,∴m=2,∴点(2,8)在幂函数f(x)=xn上,∴2n=8,∴n=3,∴幂函数解析式为f(x)=x3,在R上单调递增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故选:B.【点睛】本题主要考查了幂函数的性质,以及利用函数的单调性比较函数值大小,属于中档题.5、C【解析】

先根据组合数计算出所有的情况数,再根据“3个数中至少有2个阳数且能构成等差数列”列举得到满足条件的情况,由此可求解出对应的概率.【详解】所有的情况数有:种,3个数中至少有2个阳数且能构成等差数列的情况有:,共种,所以目标事件的概率.故选:C.【点睛】本题考查概率与等差数列的综合,涉及到背景文化知识,难度一般.求解该类问题可通过古典概型的概率求解方法进行分析;当情况数较多时,可考虑用排列数、组合数去计算.6、A【解析】

作于,于,分析可得,,再根据正弦的大小关系判断分析得,再根据线面角的最小性判定即可.【详解】作于,于.因为平面平面,平面.故,故平面.故二面角为.又直线与平面所成角为,因为,故.故,当且仅当重合时取等号.又直线与平面所成角为,且为直线与平面内的直线所成角,故,当且仅当平面时取等号.故.故选:A【点睛】本题主要考查了线面角与线线角的大小判断,需要根据题意确定角度的正弦的关系,同时运用线面角的最小性进行判定.属于中档题.7、D【解析】

直接利用二倍角余弦公式与弦化切即可得到结果.【详解】∵,∴,故选D【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,同角三角函数关系式的应用,主要考查学生的运算能力和转化能力,属于基础题型.8、C【解析】

根据程序框图的模拟过程,写出每执行一次的运行结果,属于基础题.【详解】初始值,第一次循环:,;第二次循环:,;第三次循环:,;第四次循环:,;第五次循环:,;第六次循环:,;第七次循环:,;第九次循环:,;第十次循环:,;所以输出.故选:C【点睛】本题考查了循环结构的程序框图的读取以及运行结果,属于基础题.9、A【解析】

由题可知:,且可得,构造函数求导,通过导函数求出的单调性,结合图像得出,即得出,从而得出的最大值.【详解】因为,则,即整理得,令,设,则,令,则,令,则,故在上单调递增,在上单调递减,则,因为,,由题可知:时,则,所以,所以,当无限接近时,满足条件,所以,所以要使得故当时,可有,故,即,所以:最大值为5.故选:A.【点睛】本题主要考查利用导数求函数单调性、极值和最值,以及运用构造函数法和放缩法,同时考查转化思想和解题能力.10、B【解析】

由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断.【详解】“”的否定是“”,正确;已知为两个命题,若“”为假命题,则“”为真命题,正确;“”是“”的必要不充分条件,错误;“若,则且”是假命题,则它的逆否命题为假命题,错误.故选:B.【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.11、D【解析】

画出,,根据向量的加减法,分别画出的几种情况,由数形结合可得结果.【详解】由题意,得向量是所有向量中模长最小的向量,如图,当,即时,最小,满足,对于任意的,所以本题答案为D.【点睛】本题主要考查了空间向量的加减法,以及点到直线的距离最短问题,解题的关键在于用有向线段正确表示向量,属于基础题.12、D【解析】

利用三角函数的图象变换求得函数的解析式,再根据三角函数的性质,即可求解,得到答案.【详解】将将函数的图象向左平移个单位长度,可得函数又由函数为偶函数,所以,解得,因为,当时,,故选D.【点睛】本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟记三角函数的图象变换,合理应用三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】试题分析:由,则可运用同角三角函数的平方关系:,已知两边及其对角,求角.用正弦定理;,则;可得.考点:运用正弦定理解三角形.(注意多解的情况判断)14、.【解析】

画出可行域,解出可行域的顶点坐标,代入目标函数求出相应的数值,比较大小得到目标函数最值.【详解】解:作出可行域,如图所示,则当直线过点时直线的截距最大,z取最大值.由同理,,取最大值.故答案为:.【点睛】本题考查线性规划的线性目标函数的最优解问题.线性目标函数的最优解一般在平面区域的顶点或边界处取得,所以对于一般的线性规划问题,若可行域是一个封闭的图形,我们可以直接解出可行域的顶点,然后将坐标代入目标函数求出相应的数值,从而确定目标函数的最值;若可行域不是封闭图形还是需要借助截距的几何意义来求最值.15、【解析】

对求导,再根据点的坐标可得切线方程,令,可得点横坐标,由的面积为3,求解即得.【详解】由题,,切线斜率,则切线方程为,令,解得,又的面积为3,,解得.故答案为:【点睛】本题考查利用导数研究函数的切线,难度不大.16、5【解析】

先作出可行域,再做直线,平移,找到使直线在y轴上截距最小的点,代入即得。【详解】作出不等式组表示的平面区域,如图,令,则,作出直线,平移直线,由图可得,当直线经过C点时,直线在y轴上的截距最小,由,可得,因此的最小值为.故答案为:4【点睛】本题考查不含参数的线性规划问题,是基础题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析;(3)见解析【解析】

(1)需满足恒成立,只需即可;(2)根据的单调性,构造新函数,并令,根据的单调性即可得证;(3)将问题转化为证明有唯一实数解,对求导,判断其单调性,结合题目条件与不等式的放缩,即可得证.【详解】;令,则恒成立;,;的取值范围是;(2)证明:由(1)知,在上单调递减,在上单调递增;;令,;则;令,则;;;(3)证明:,,要证明有唯一实数解;当时,;当时,;即对于任意实数,一定有解;;当时,有两个极值点;函数在,,上单调递增,在上单调递减;又;只需,在时恒成立;只需;令,其中一个正解是;,;单调递增,,(1);;;综上得证.【点睛】本题考查了利用导数研究函数的单调性,考查了利用导数证明不等式,考查了转化思想、不等式的放缩,属难题.18、(1).(2)答案见解析【解析】

(1)利用绝对值不等式的性质即可求得最小值;(2)利用分析法,只需证明,两边平方后结合即可得证.【详解】(1),当且仅当时取等号,∴的最小值;(2)证明:依题意,,要证,即证,即证,即证,即证,又可知,成立,故原不等式成立.【点睛】本题考查用绝对值三角不等式求最值,考查用分析法证明不等式,在不等式不易证明时,可通过执果索因的方法寻找结论成立的充分条件,完成证明,这就是分析法.19、(Ⅰ){x|-3≤x≤2}(Ⅱ)见证明【解析】

(Ⅰ)由题意结合不等式的性质零点分段求解不等式的解集即可;(Ⅱ)首先确定m的值,然后利用柯西不等式即可证得题中的不等式.【详解】(Ⅰ)①当x>1时,f(x)=(x-1)+(x+2)=2x+1≤5,即x≤2,∴1<x≤2;②当-2≤x≤1时,f(x)=(1-x)+(x+2)=3≤5,∴-2≤x≤1;③当x<-2时,f(x)=(1-x)-(x+2)=-2x-1≤5,即x≥-3,∴-3≤x<-2.综上所述,原不等式的解集为{x|-3≤x≤2}.(Ⅱ)∵f(x)=x-1当且仅当-2≤x≤1时,等号成立.∴f(x)的最小值m=3.∴[(即2a当且仅当2a×1又1a+1b=∴2a【点睛】本题主要考查绝对值不等式的解法,柯西不等式及其应用,绝对值三角不等式求最值的方法等知识,意在考查学生的转化能力和计算求解能力.20、(2)(x﹣2)2+y2=2.(2)().(3)存在,【解析】

(2)设圆心为M(m,0),根据相切得到,计算得到答案.(2)把直线ax﹣y+5=0,代入圆的方程,计算△=4(5a﹣2)2﹣4(a2+2)>0得到答案.(3)l的方程为,即x+ay+2﹣4a=0,过点M(2,0),计算得到答案.【详解】(2)设圆心为M(m,0)(m∈Z).由于圆与直线4x+3y﹣29=0相切,且半径为5,所以,即|4m﹣29|=2.因为m为整数,故m=2.故所求圆的方程为(x﹣2)2+y2=2.(2)把直线ax﹣y+5=0,即y=ax+5,代入圆的方程,消去y,整理得(a2+2)x2+2(5a﹣2)x+2=0,由于直线ax﹣y+5=0交圆于A,B两点,故△=4(5a﹣2)2﹣4(a2+2)>0,即22a2﹣5a>0,由于a>0,解得a,所以实数a的取值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论