《备考指南一轮·数学·》课件-第3章 第9讲_第1页
《备考指南一轮·数学·》课件-第3章 第9讲_第2页
《备考指南一轮·数学·》课件-第3章 第9讲_第3页
《备考指南一轮·数学·》课件-第3章 第9讲_第4页
《备考指南一轮·数学·》课件-第3章 第9讲_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函数第三章第9讲函数模型及其应用高考要求考情分析1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等模型)在社会生活中的广泛应用函数的实际应用问题,常常以选择题、填空题的形式出现,如果出现在解答题中,便是和导数结合在一起考查,考查数学建模和数学运算的核心素养栏目导航01基础整合自测纠偏03追踪命题直击高考02重难突破能力提升04配套训练基础整合自测纠偏11.几类函数模型及其增长差异(1)几类函数模型:(2)三种函数模型的性质:递增函数y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)内的增减性单调______单调______单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与______平行随x的增大逐渐表现为与______平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有logax<xn<ax递增y轴x轴2.解函数应用问题的步骤(四步八字)(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型.(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型.(3)解模:求解数学模型,得出数学结论.(4)还原:将数学问题还原为实际问题的意义.以上过程用框图表示如下:1.在某个物理实验中,测量得变量x和变量y的几组数据如下表:则对x,y最适合的拟合函数是(

)A.y=2x

B.y=x2-1C.y=2x-2

D.y=log2x【答案】Dx0.500.992.013.98y-0.990.010.982.002.下所示是张大爷晨练时所走的离家距离(y)与行走时间(x)之间的函数关系的图象,若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是(

)3.某商店每月按出厂价每瓶3元购进一种饮料,根据以前的统计数据,若零售价定为每瓶4元,每月可销售400瓶;若零售价每降低(升高)0.5元,则可多(少)销售40瓶,每月的进货在当月销售完的前提下,为获得最大利润,销售价应定为________元/瓶.【答案】64.(2019年枣阳高级中学期中)拟定甲、乙两地通话m分钟的电话费(单位:元)由f(m)=1.06(0.5[m]+1)给出,其中m>0,[m]是不超过m的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为________元.【答案】4.24【解析】因为m=6.5,所以[m]=6,则f(m)=1.06×(0.5×6+1)=4.24.1.函数模型应用不当,是常见的解题错误.所以要正确理解题意,选择适当的函数模型.2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.(4)在(0,+∞)内,随着x的增大,y=ax(a>1)的增长速度会超过并远远大于y=xa(a>0)的增长速度.(

)(5)指数型函数y=a·bx+c(a≠0,b>0,b≠1)的增长速度越来越快.(

)(6)指数函数模型,一般用于解决变化较快、短时间内变化量较大的实际问题.(

)【答案】(1)√

(2)×

(3)×

(4)√

(5)×

(6)√重难突破能力提升2一次函数、二次函数模型

据气象中心观察和预测:发生于沿海M地的台风一直向正南方向移动,其移动速度v(单位:km/h)与时间t(单位:h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积为时间t内台风所经过的路程s(单位:km).(1)当t=4时,求s的值;(2)将s随t变化的规律用数学关系式表示出来;【规律方法】一次函数、二次函数模型问题的常见类型及解题策略:(1)直接考查一次函数、二次函数模型.解决此类问题应注意三点:①二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;②确定一次函数模型时,一般是借助两个点来确定,常用待定系数法;③解决函数应用问题时,最后要还原到实际问题.(2)以分段函数的形式考查.解决此类问题应关注以下三点:①实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段函数模型求解;②构造分段函数时,要力求准确、简洁,做到分段合理、不重不漏;③分段函数的最值是各段的最大(最小)值的最大者(最小者).【跟踪训练】1.(2020年商丘二中检测)如图,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE=4米,CD=6米.为了合理利用这块钢板,在五边形ABCDE内截取一个矩形BNPM,使点P在边DE上.(1)设MP=x米,PN=y米,将y表示成x的函数,并求该函数的解析式及定义域;(2)求矩形BNPM面积的最大值.【跟踪训练】2.某村计划建造一个室内面积为800m2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1m宽的通道,沿前侧内墙保留3m宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大面积是多少?指数函数、对数函数模型的应用(2)(2019年唐山模拟)某人计划购买一辆轿车,售价为14.4万元,购买后轿车每年的保险费、汽油费、年检费、停车费等约需2.4万元,同时汽车年折旧率约为10%(即这辆车每年减少它的价值的10%),则大约使用________年后,用在该车上的费用(含折旧费)达到14.4万元.【答案】(1)C

(2)4

【解析】(1)由题意知,lgA-lg0.001=4,即lgA=1,解得A=10.故选C.(2)设使用x年后花费在该车上的费用达到14.4万元,依题意可得14.4(1-0.9x)+2.4x=14.4,化简得x-6×0.9x=0.令f(x)=x-6×0.9x,易得f(x)为单调递增函数,又f(3)=-1.374<0,f(4)=0.0634>0,所以函数f(x)在(3,4)上有一个零点.故大约使用4年后,用在该车上的费用达到14.4万元.【规律方法】掌握2种函数模型的应用技巧(1)与指数函数、对数函数模型有关的实际问题,在求解时,要先学会合理选择模型,在三类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题,必要时可借助导数.追踪命题直击高考3【典例精析】

典例.“绿水青山就是金山银山”的环境保护理念已经逐渐深入到老百姓的意识中,保护环境,人人有责,各化工厂对污水的处理也加大了投入.某化工厂每一天中污水污染指数f(x)与时刻x(时)的函数关系为f(x)=|log25(x+1)-a|+2a+1,x∈[0,24],其中a为污水治理调节参数,且a∈(0,1).规定每天中f(x)的最大值作为当天的污水污染指数,要使该厂每天的污水污染指数不超过3,则调节参数a的取值范围为________.【考查角度】利用函数模型解决实际问题.【考查目的】考查应用意识和转化能力,体现了数学建模的核心素养.【思路导引】根据题目提供的数学模型,利用换元法将原函数关系式转化为一次函数关系式,再利用一次函数的性质求解.【拓展延伸】1.实际问题的定义域要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.2.解决实际应用问题的一般步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型.(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型.(3)求模:求解数学模型,得出数学结论.(4)还原:将数学问题还原为实际问题的意义.【真题链接】

1.(2016年四川)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(

)(参考数据:lg1.12≈0.05

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论