




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
解题秘籍03几何背景下的线段最值问题(6种题型汇总+专项训练+真题训练)【题型汇总】【考情分析】线段最值问题在中考中常常以选择题和填空题的形式出现,分值较小但难度较高.此类题型多综合考查将军饮马、费马点、胡不归等问题,一般要用到特殊三角形、特殊四边形、相似三角形、勾股定理和二次函数等相关知识,以及数形结合、分类讨论、转化与化归等数学思想.题型01垂线段最短图形条件如图,点P为直线m1上一动点,点Q为直线m2上一动点,点A为定点,求PA+PQ的最小值.如图,点P为直线m1上一动点,点Q为直线m2上一动点,点A为定点,求PA+PQ的最小值.10.(2024·四川凉山·中考真题)如图,⊙M的圆心为M4,0,半径为2,P是直线y=x+4上的一个动点,过点P作⊙M的切线,切点为Q,则11.(2022·山东菏泽·中考真题)如图,在菱形ABCD中,AB=2,∠ABC=60°,M是对角线BD上的一个动点,CF=BF,则MA+MF的最小值为(
)A.1 B.2 C.3 D.2题型02将军饮马问题图形条件如图,点M,N分别为m1,m2上的动点,点P为定点,求PM+PN+MN的最小值.结论做点P关于m1,m2的对称点P',P'',那么当P',M,N,P''四点共线时,PM+PN+MN取得最小值,最小值为的距离.图形条件如图,A,B为定点,M,N分别为m,n上的动点,MN⊥n,m∥n,且MN为定值,求AM+MN+NB的最小值.如图,A,B为定点,M,N分别为m上的动点,且MN为定值,求AM+MN+NB最小值.结论如图,将点A向下平移MN的单位长度得到点A',连接A'B,交n于点N,过点N作MN⊥m,垂足为点M,点M和点N即为所求,当A',N,B三点共线时AM+MN+NB取得最小值,最小值为A'B+MN.如图,将点A向右平移MN个单位长度得点A',作B关于直线m的对称点B’,连接A'B',交直线m于点N,将点N向左平移MN个单位长度得点M,点M和点N即为所求,当A',N,B'三点共线时AM+MN+NB取得最小值,最小值为A'B'+MN.3.(2024·四川成都·中考真题)如图,在平面直角坐标系xOy中,已知A3,0,B0,2,过点B作y轴的垂线l,P为直线l上一动点,连接PO,PA,则PO+PA的最小值为4.(2023·山东菏泽·二模)如图,直线y1=kx+2与反比例函数y2=3x的图象交于点
(1)若y1>y(2)动点Pn,0在x轴上运动.当n为何值时,PA-PC5.(2023·陕西咸阳·一模)【问题提出】(1)如图1,点A、B在直线l的同侧,点A到直线l的距离AC=2,点B到直线l的距离BD=4,A、B两点的水平距离CD=8,点P是直线l上的一个动点,则AP+BP的最小值是________;【问题探究】(2)如图2,在矩形ABCD中,AB=4,BC=2,G是AD的中点,线段EF在边AB上左右滑动,若EF=1,求GE+CF的最小值;【问题解决】(3)如图3,某公园有一块形状为四边形ABCD的空地,管理人员规划修两条小路AC和BD(小路的宽度忽略不计,两条小路交于点P),并在AD和BC上分别选取点M、N,沿PM、PN和MN修建地下水管,为了节约成本,要使得线段PM、PN与MN之和最小.已测出∠ACB=45°,∠ADB=60°,∠CPD=75°,PD=40m,PC=502m
6.(2024·重庆·中考真题)如图,在平面直角坐标系中,抛物线y=ax2+bx+4a≠0经过点-1,6,与y轴交于点C,与x轴交于A,B两点((1)求抛物线的表达式;(2)点P是射线CA上方抛物线上的一动点,过点P作PE⊥x轴,垂足为E,交AC于点D.点M是线段DE上一动点,MN⊥y轴,垂足为N,点F为线段BC的中点,连接AM,NF.当线段PD长度取得最大值时,求(3)将该抛物线沿射线CA方向平移,使得新抛物线经过(2)中线段PD长度取得最大值时的点D,且与直线AC相交于另一点K.点Q为新抛物线上的一个动点,当∠QDK=∠ACB时,直接写出所有符合条件的点Q的坐标.7.(2024·西藏·中考真题)在平面直角坐标系中,抛物线y=ax2+bx+3a≠0与x轴交于A-1,0,B3,0两点,与(1)求抛物线的解析式;(2)如图(甲),设点C关于直线l的对称点为点D,在直线l上是否存在一点P,使PA-PD有最大值?若存在,求出PA-PD的最大值;若不存在,请说明理由;(3)如图(乙),设点M为抛物线上一点,连接MC,过点M作MN⊥CM交直线l于点N.若tan∠MCN=23题型03胡不归问题【模型详解】条件:已知A,B为定点,其中点A在定直线m上,点P在直线m上一动点,求k•PA+PB(k<1)的最小值.图示:解题步骤:作射线AM使sin∠PAM=k(k<1),且点M与点B位于直线m的两侧.2)过点P作PC⊥AM于点C,则PC=k•PA,此时k•PA+PB=PC+BP.3)过点B作BD⊥AM于点D,该垂线段长即为所求最小值,计算垂线段的解题大招:即当B,P,C三点共线时,k•PA+PB取最小值,最小值为BD的长度.模型总结:在求形如“k•PA+PB”的式子的最值问题中,关键是构造与k•PA相等的线段,将“k•PA+PB”型问题转化为“PC+PB”型.而这里的PA必须是一条方向不变的线段,方能构造定角利用三角函数得到k•PA的等线段注意:若k>1,则提取系数,转化为小于1的形式解决即可.【模型拓展】对形如a•PA+b•PB(a>b)的式子,可以先将式子变形为,再求出的最小值,此时只需要构造,作垂线即可求出最小值.8.(2023·湖南湘西·中考真题)如图,⊙O是等边三角形ABC的外接圆,其半径为4.过点B作BE⊥AC于点E,点P为线段BE上一动点(点P不与B,E重合),则CP+12BP
9.(22-23九年级上·广东茂名·期末)如图,AB=AC,A0,15,C(1,0),D为射线AO上一点,一动点P从A出发,运动路径为A-D-C,在AD上的速度为4个单位/秒,在CD上的速度为1个单位/秒,则整个运动时间最少时,D的坐标为10.(2024·四川德阳·二模)如图,已知抛物线y=ax2+bx+c与x轴交于A(1,0),C(-3,0)两点,与y轴交于点B(0,A.2 B.2 C.22 D.411.(2022·内蒙古鄂尔多斯·中考真题)如图,在△ABC中,AB=AC=4,∠CAB=30°,AD⊥BC,垂足为D,P为线段AD上的一动点,连接PB、PC.则PA+2PB的最小值为.题型04费马点费马点概念:三角形内部满足到三个顶点距离之和最小的点,称为费马点.结论:1)对于一个各角不超过120°的三角形,费马点是对各边的张角都是120°的点;2)对于有一个角超过120°的三角形,费马点就是这个内角的顶点.(注意:通常涉及费马点的试题中三角形的最大顶角小于120°)【解题思路】运用旋转的方法,以∆ABC任意一条边向外旋转60°构造等边三角形,根据两点之间线段最短,得出最短长度.【进阶】加权费马点模型概述:前面学的PA+PB+PC最小值的费马点问题线段前面系数都是l,如果现在求mPA+nPB+xPC最小值,前面系数不是1,那么此类题目就叫做“加权费马点”.【模型拓展】类型一单系数类当只有一条线段带有不为1的系数时,相对较为简单,一般有两种处理手段,1)一种是旋转特殊角度:对应旋转90°,对应旋转120°求AD+CD+BD的最小值求AD+CD+BD的最小值旋转角度是90°旋转角度是120°2)另一种是旋转放缩,对应三角形三边之比类型二多系数类其实当三条线段的三个系数满足勾股数的关系时,都是符合加权费马点的条件的。以不同的点为旋转中心,旋转不同的三角形得到的系数是不同的,对于给定的系数,我们该如何选取旋转中心呢?我们总结了以下方法:1.将最小系数提到括号外;2.中间大小的系数确定放缩比例;3.最大系数确定旋转中心(例如最大系数在PA前面,就以A为旋转中心),旋转系数不为1的两条线段所在的三角形。12.(2024·陕西榆林·二模)如图,在▱ABCD中,AD=6,连接AC,AB=AC=5,以点C为圆心,15CD长为半径画弧,弧分别交BC、AC、CD于点M、H、N,点P是HN上方△ACD内一动点,点Q是HN上一动点,连接AP、DP、PQ,则AP+DP+PQ的最小值为13.(2024·湖北·模拟预测)阅读以下材料并完成问题材料一:数形结合是一种重要的数学思想如a2+b2可看做是图一中AB的长,a+12材料二:费马点问题是一个古老的数学问题.费马点即在△ABC中有一点P使得PA+PB+PC的值最小.著名法学家费马给出的证明方法如下:将△ABP绕B点向外旋转60°得到△A1B1C1,并连接PP1易得△PP1B请结合以上两材料求出x2
14.(2023·湖北随州·中考真题)1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.(1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)当△ABC的三个内角均小于120°时,如图1,将△APC绕,点C顺时针旋转60°得到△A'P
由PC=P'C,∠PCP'=60°,可知△PCP'为由②可知,当B,P,P',A在同一条直线上时,PA+PB+PC取最小值,如图2,最小值为A'B,此时的P点为该三角形的“费马点”,且有∠APC=∠BPC=∠APB=已知当△ABC有一个内角大于或等于120°时,“费马点”为该三角形的某个顶点.如图3,若∠BAC≥120°,则该三角形的“费马点”为④点.(2)如图4,在△ABC中,三个内角均小于120°,且AC=3,BC=4,∠ACB=30°,已知点P为△ABC的“费马点
(3)如图5,设村庄A,B,C的连线构成一个三角形,且已知AC=4km,BC=23km,∠ACB=60°.现欲建一中转站P沿直线向A,B,C三个村庄铺设电缆,已知由中转站P到村庄A,B,C的铺设成本分别为a元/km,a元/km,2a元/15.(2023九年级下·全国·专题练习)如图,正方形ABCD的边长为4,点P是正方形内部一点,求PA+2PB+516.(2024·湖北武汉·模拟预测)如图,在△ABC中,∠ACB=30°,BC=4,在△ABC内有一点O,连接OA,OB,OC,若2OA+OB+5OC的最小值为45,则AC
题型05阿氏圆问题使用场景已知两个定点A,B,动点P在定圆上,求PA+kPB的最小值类型点A,B均在圆外,r=kOB(k<1)点A,B均在圆内,r=kOB(k>1)图示解题策略第一步:在OB上取点D,使得OD=kr;第二步:由母子相似模型可得△POD∽△BOP,则PD=kPB,此时PA+kPB=PA+PD;第三步:连接AD,则AD的长即为PA+kPB的最小值.第一步:在OB的延长线上取点D,使得OD=kr;第二步:由母子相似模型可得△POD∽△BOP,则PD=kPB.此时PA+kPB=PA+PD;第三步:连接AD,则AD的长即为PA+kPB的最小值大招结论AD的长即为PA+kPB的最小值【模型总结】对于阿氏圆而言:当系数k<1的时候,一般情况下,考虑向内构造.当系数k>1的时候,一般情况下,考虑向外构造.【注意事项】针对求PA+kPB的最小值问题时,当轨迹为直线时,运用“胡不归模型”求解;当轨迹为圆形时,运用“阿氏圆模型”求解.17.(2024·山东泰安·二模)如图,在Rt△ABC中,∠ACB=90°,CB=22,AC=9,以C为圆心,3为半径作⊙C,P为⊙C上一动点,连接AP、BP,则1A.1 B.2 C.3 D.418.(2024·安徽六安·模拟预测)如图,在矩形ABCD中,已知AB=3,BC=6,E为AD边上一动点,将△ABE沿BE翻折到△FBE的位置,点A与点F重合,连接DF,CF,则DF+1A.92 B.132 C.4 D19.(2020·广西·中考真题)如图,在Rt△ABC中,AB=AC=4,点E,F分别是AB,AC的中点,点P是扇形AEF的EF上任意一点,连接BP,CP,则12BP+CP的最小值是20.(2020·江苏常州·一模)如图,在⊙O中,点A、点B在⊙O上,∠AOB=90°,OA=6,点C在OA上,且OC=2AC,点D是OB的中点,点M是劣弧AB上的动点,则CM+2DM的最小值为.21.(20-21九年级上·江苏宿迁·期末)问题提出:如图①,在Rt△ABC中,∠C=90°,CB=4,CA=6,⊙C的半径为2,(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图①,连接CP,在CB上取一点D,使CD=1,则CDCP=CPCB=12.又∠PCD=∠BCP,所以△PCD∽△BCP(2)自主探索:在“问题提出”的条件不变的前提下,求13(3)拓展延伸:如图②,已知在扇形COD中,∠COD=90°,OC=6,OA=3,OB=22.(2025九年级下·全国·专题练习)如图,在△ABC中,∠ABC=90°,AB=2BC=6,BD=1,P在以B为圆心3为半径的圆上,则AP+6PD的最小值为.23.(2023·陕西咸阳·三模)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E、F分别是OD、OC上的两个动点,且EF=4,P是EF的中点,连接OP、PC、
24.如图,在RtΔABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接PA,PB,则PA+14题型06瓜豆模型【模型一】点在直线上条件;如图,点O是定点,点A、B是动点,∠AOB=α(α≠0)且OBOA图示:结论:B点的运动轨迹也是直线,OBOA=OB’OA’=k,【模型二】点在圆上条件;如图,点O是定点,点A、B是动点,∠AOB=α且OBOA=k,A点图示:结论:1)当α=0,①B点的运动轨迹是圆,②A,B,O始终是一条直线,③主动圆与从动圆的半径之比为OBOA2)当α≠0,①B点的运动轨迹是圆,②主动圆与从动圆的半径之比为OBOA③主从动圆的圆心与定点连线构成的夹角为α(定值).【总结】1)在线段最值问题中,有时可先利用“瓜豆”模型确定动点的轨迹,再根据点线最值,点圆最值来求线段最值;2)部分求动点轨迹长的问题中,只要确定属于"瓜豆“模型,就可以利用路经之比等于相似比,根据主动点的轨迹长直接求得25.(2022·安徽合肥·三模)如图,在Rt△ABC纸片中,∠ACB=90°,AC=4,BC=3,点D,E分别在BC,AB边上,连接DE,将△BDE沿DE翻折,使点B落在点F的位置,连接AF,若四边形BEFD是菱形,则AF的长的最小值为(
)A.5 B.3 C.52 D.26.(2023·广东广州·二模)如图,正方形ABCD的边长为42,E为BC上一点,且BE=2,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为
27.(2024·安徽淮北·三模)如图,线段AB=4,点M为AB的中点,动点P到点M的距离是1,连接PB,线段PB绕点P逆时针旋转90°得到线段PC,连接AC,则线段AC长度的最大值是(
)A.3 B.4 C.22 D.28.(2023·浙江宁波·模拟预测)如图,△ABC中,∠ABC=90°,tan∠BAC=12,点D是AB的中点,P是以A为圆心,以AD为半径的圆上的动点,连接PB、A.103 B.31010 C.13【专项训练】【将军饮马】1.(2023·四川宜宾·中考真题)如图,在平面直角坐标系xOy中,等腰直角三角形ABC的直角顶点C3,0,顶点A、B6,
(1)分别求反比例函数的表达式和直线AB所对应的一次函数的表达式;(2)在x轴上是否存在一点P,使△ABP周长的值最小.若存在,求出最小值;若不存在,请说明理由.2.(2025·湖南娄底·一模)如图,点A是坐标原点,点B在x轴的正半轴上,点C在第一象限.AB=4,∠CAB=30°,∠CBA=120°.(1)求点C的坐标;(2)点P是y轴上的一个动点,当点P处于何位置时,PB+PC的值最小?【费马点】1.(2024·湖北·模拟预测)阅读以下材料并完成问题材料一:数形结合是一种重要的数学思想如a2+b2可看做是图一中AB的长,a+12材料二:费马点问题是一个古老的数学问题.费马点即在△ABC中有一点P使得PA+PB+PC的值最小.著名法学家费马给出的证明方法如下:将△ABP绕B点向外旋转60°得到△A1B1C1,并连接PP1易得△P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《游动物园》(教学设计)-2024-2025学年一年级上册数学冀教版
- 2025幼师工作总结范文(15篇)
- 心理协会工作计划(15篇)
- 2025保育员个人近期总结(4篇)
- 为中考努力拼搏的演讲稿(20篇)
- 初中军训锻炼的体会(28篇)
- 中华民族团结演讲稿格式(3篇)
- 2025护士医德医风工作总结(18篇)
- 参加课题研究心得体会及收获
- 智慧课堂平台运用的精准教学
- 车队运营中的司机管理策略研究
- 新生儿脐部出血的护理
- 实验室的智能化设计与建设
- 《中国海洋大学》课件
- 排污许可管理培训课件
- 《盐津铺子公司盈利能力探析实例报告(10000字论文)》
- 2025年中考语文课内名著阅读专题复习:第10部 《水浒传》课件
- 案例:中建八局绿色施工示范工程绿色施工(76P)
- 水产养殖技术培训
- 2025年希望数学五年级培训题(含答案)
- 保洁投标书范本
评论
0/150
提交评论