




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市虹口区复兴高中高三下学期5月统考数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合,,则()A. B.C. D.2.记的最大值和最小值分别为和.若平面向量、、,满足,则()A. B.C. D.3.已知F是双曲线(k为常数)的一个焦点,则点F到双曲线C的一条渐近线的距离为()A.2k B.4k C.4 D.24.设f(x)是定义在R上的偶函数,且在(0,+∞)单调递减,则()A. B.C. D.5.在复平面内,复数z=i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是()A. B. C. D.6.已知函数在区间上恰有四个不同的零点,则实数的取值范围是()A. B. C. D.7.已知函数(),若函数在上有唯一零点,则的值为()A.1 B.或0 C.1或0 D.2或08.已知是双曲线的左右焦点,过的直线与双曲线的两支分别交于两点(A在右支,B在左支)若为等边三角形,则双曲线的离心率为()A. B. C. D.9.《九章算术》勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为()A. B. C. D.10.已知函数,则的最小值为()A. B. C. D.11.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为A. B. C. D.12.已知抛物线经过点,焦点为,则直线的斜率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某校高三年级共有名学生参加了数学测验(满分分),已知这名学生的数学成绩均不低于分,将这名学生的数学成绩分组如下:,,,,,,得到的频率分布直方图如图所示,则下列说法中正确的是________(填序号).①;②这名学生中数学成绩在分以下的人数为;③这名学生数学成绩的中位数约为;④这名学生数学成绩的平均数为.14.在平面直角坐标系中,圆.已知过原点且相互垂直的两条直线和,其中与圆相交于,两点,与圆相切于点.若,则直线的斜率为_____________.15.函数在内有两个零点,则实数的取值范围是________.16.如图,在三棱锥中,平面,,已知,,则当最大时,三棱锥的体积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)时,求的单调区间;(2)当时,设的最小值为,若恒成立,求实数t的取值范围.18.(12分)设函数,,.(1)求函数的单调区间;(2)若函数有两个零点,().(i)求的取值范围;(ii)求证:随着的增大而增大.19.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大小;(2)若△ABC外接圆的半径为,求△ABC面积的最大值.20.(12分)在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,点P在棱DF上.(1)若P是DF的中点,求异面直线BE与CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值为,求PF的长度.21.(12分)已知椭圆()的离心率为,且经过点.(1)求椭圆的方程;(2)过点作直线与椭圆交于不同的两点,,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.22.(10分)已知函数(1)当时,求不等式的解集;(2)若函数的值域为A,且,求a的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
利用一元二次不等式的解法和集合的交运算求解即可.【详解】由题意知,集合,,由集合的交运算可得,.故选:D【点睛】本题考查一元二次不等式的解法和集合的交运算;考查运算求解能力;属于基础题.2、A【解析】
设为、的夹角,根据题意求得,然后建立平面直角坐标系,设,,,根据平面向量数量积的坐标运算得出点的轨迹方程,将和转化为圆上的点到定点距离,利用数形结合思想可得出结果.【详解】由已知可得,则,,,建立平面直角坐标系,设,,,由,可得,即,化简得点的轨迹方程为,则,则转化为圆上的点与点的距离,,,,转化为圆上的点与点的距离,,.故选:A.【点睛】本题考查和向量与差向量模最值的求解,将向量坐标化,将问题转化为圆上的点到定点距离的最值问题是解答的关键,考查化归与转化思想与数形结合思想的应用,属于中等题.3、D【解析】
分析可得,再去绝对值化简成标准形式,进而根据双曲线的性质求解即可.【详解】当时,等式不是双曲线的方程;当时,,可化为,可得虚半轴长,所以点F到双曲线C的一条渐近线的距离为2.故选:D【点睛】本题考查双曲线的方程与点到直线的距离.属于基础题.4、D【解析】
利用是偶函数化简,结合在区间上的单调性,比较出三者的大小关系.【详解】是偶函数,,而,因为在上递减,,即.故选:D【点睛】本小题主要考查利用函数的奇偶性和单调性比较大小,属于基础题.5、A【解析】
由复数z求得点Z的坐标,得到向量的坐标,逆时针旋转,得到向量的坐标,则对应的复数可求.【详解】解:∵复数z=i(i为虚数单位)在复平面中对应点Z(0,1),
∴=(0,1),将绕原点O逆时针旋转得到,
设=(a,b),,则,即,
又,解得:,∴,对应复数为.故选:A.【点睛】本题考查复数的代数表示法及其几何意义,是基础题.6、A【解析】
函数的零点就是方程的解,设,方程可化为,即或,求出的导数,利用导数得出函数的单调性和最值,由此可根据方程解的个数得出的范围.【详解】由题意得有四个大于的不等实根,记,则上述方程转化为,即,所以或.因为,当时,,单调递减;当时,,单调递增;所以在处取得最小值,最小值为.因为,所以有两个符合条件的实数解,故在区间上恰有四个不相等的零点,需且.故选:A.【点睛】本题考查复合函数的零点.考查转化与化归思想,函数零点转化为方程的解,方程的解再转化为研究函数的性质,本题考查了学生分析问题解决问题的能力.7、C【解析】
求出函数的导函数,当时,只需,即,令,利用导数求其单调区间,即可求出参数的值,当时,根据函数的单调性及零点存在性定理可判断;【详解】解:∵(),∴,∴当时,由得,则在上单调递减,在上单调递增,所以是极小值,∴只需,即.令,则,∴函数在上单调递增.∵,∴;当时,,函数在上单调递减,∵,,函数在上有且只有一个零点,∴的值是1或0.故选:C【点睛】本题考查利用导数研究函数的零点问题,零点存在性定理的应用,属于中档题.8、D【解析】
根据双曲线的定义可得的边长为,然后在中应用余弦定理得的等式,从而求得离心率.【详解】由题意,,又,∴,∴,在中,即,∴.故选:D.【点睛】本题考查求双曲线的离心率,解题关键是应用双曲线的定义把到两焦点距离用表示,然后用余弦定理建立关系式.9、C【解析】
由题意知:,,设,则,在中,列勾股方程可解得,然后由得出答案.【详解】解:由题意知:,,设,则在中,列勾股方程得:,解得所以从该葭上随机取一点,则该点取自水下的概率为故选C.【点睛】本题考查了几何概型中的长度型,属于基础题.10、C【解析】
利用三角恒等变换化简三角函数为标准正弦型三角函数,即可容易求得最小值.【详解】由于,故其最小值为:.故选:C.【点睛】本题考查利用降幂扩角公式、辅助角公式化简三角函数,以及求三角函数的最值,属综合基础题.11、B【解析】
求得基本事件的总数为,其中乙丙两人恰好参加同一项活动的基本事件个数为,利用古典概型及其概率的计算公式,即可求解.【详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件的总数为,其中乙丙两人恰好参加同一项活动的基本事件个数为,所以乙丙两人恰好参加同一项活动的概率为,故选B.【点睛】本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.12、A【解析】
先求出,再求焦点坐标,最后求的斜率【详解】解:抛物线经过点,,,,故选:A【点睛】考查抛物线的基础知识及斜率的运算公式,基础题.二、填空题:本题共4小题,每小题5分,共20分。13、②③【解析】
由频率分布直方图可知,解得,故①不正确;这名学生中数学成绩在分以下的人数为,故②正确;设这名学生数学成绩的中位数为,则,解得,故③正确;④这名学生数学成绩的平均数为,故④不正确.综上,说法正确的序号是②③.14、【解析】
设:,:,利用点到直线的距离,列出式子,求出的值即可.【详解】解:由圆,可知圆心,半径为.设直线:,则:,圆心到直线的距离为,,.圆心到直线的距离为半径,即,并根据垂径定理的应用,可列式得到,解得.故答案为:.【点睛】本题主要考查点到直线的距离公式的运用,并结合圆的方程,垂径定理的基本知识,属于中档题.15、【解析】
设,,设,函数为奇函数,,函数单调递增,,画出简图,如图所示,根据,解得答案.【详解】,设,,则.原函数等价于函数,即有两个解.设,则,函数为奇函数.,函数单调递增,,,.当时,易知不成立;当时,根据对称性,考虑时的情况,,画出简图,如图所示,根据图像知:故,即,根据对称性知:.故答案为:.【点睛】本题考查了函数零点问题,意在考查学生的转化能力和计算能力,画出图像是解题的关键.16、4【解析】设,则,,,,当且仅当,即时,等号成立.,故答案为4三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)的增区间为,减区间为;(2).【解析】
(1)求出函数的导数,由于参数的范围对导数的符号有影响,对参数分类,再研究函数的单调区间;(2)由(1)的结论,求出的表达式,由于恒成立,故求出的最大值,即得实数的取值范围的左端点.【详解】解:(1)解:,当时,,解得的增区间为,解得的减区间为.(2)解:若,由得,由得,所以函数的减区间为,增区间为;,因为,所以,,令,则恒成立,由于,当时,,故函数在上是减函数,所以成立;当时,若则,故函数在上是增函数,即对时,,与题意不符;综上,为所求.【点睛】本题考查导数在最大值与最小值问题中的应用,求解本题关键是根据导数研究出函数的单调性,由最值的定义得出函数的最值,本题中第一小题是求出函数的单调区间,第二小题是一个求函数的最值的问题,此类题运算量较大,转化灵活,解题时极易因为变形与运算出错,故做题时要认真仔细.18、(1)见解析;(2)(i)(ii)证明见解析【解析】
(1)求出导函数,分类讨论即可求解;(2)(i)结合(1)的单调性分析函数有两个零点求解参数取值范围;(ii)设,通过转化,讨论函数的单调性得证.【详解】(1)因为,所以当时,在上恒成立,所以在上单调递增,当时,的解集为,的解集为,所以的单调增区间为,的单调减区间为;(2)(i)由(1)可知,当时,在上单调递增,至多一个零点,不符题意,当时,因为有两个零点,所以,解得,因为,且,所以存在,使得,又因为,设,则,所以单调递增,所以,即,因为,所以存在,使得,综上,;(ii)因为,所以,因为,所以,设,则,所以,解得,所以,所以,设,则,设,则,所以单调递增,所以,所以,即,所以单调递增,即随着的增大而增大,所以随着的增大而增大,命题得证.【点睛】此题考查利用导函数处理函数的单调性,根据函数的零点个数求参数的取值范围,通过等价转化证明与零点相关的命题.19、(1)B(2)【解析】
(1)由已知结合余弦定理,正弦定理及和两角和的正弦公式进行化简可求cosB,进而可求B;(2)由已知结合正弦定理,余弦定理及基本不等式即可求解ac的范围,然后结合三角形的面积公式即可求解.【详解】(1)因为b(a2+c2﹣b2)=ca2cosC+ac2cosA,∴,即2bcosB=acosC+ccosA由正弦定理可得,2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,因为,所以,所以B;(2)由正弦定理可得,b=2RsinB2,由余弦定理可得,b2=a2+c2﹣2accosB,即a2+c2﹣ac=4,因为a2+c2≥2ac,所以4=a2+c2﹣ac≥ac,当且仅当a=c时取等号,即ac的最大值4,所以△ABC面积S即面积的最大值.【点睛】本题综合考查了正弦定理,余弦定理及三角形的面积公式在求解三角形中的应用,属于中档题.20、(1).(2).【解析】
(1)以A为原点,AB为x轴,AD为y轴,AF为z轴,建立空间直角坐标系,则(﹣1,0,2),(﹣2,﹣1,1),计算夹角得到答案.(2)设,0≤λ≤1,计算P(0,2λ,2﹣2λ),计算平面APC的法向量(1,﹣1,),平面ADF的法向量(1,0,0),根据夹角公式计算得到答案.【详解】(1)∵BAF=90°,∴AF⊥AB,又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,∴AF⊥平面ABCD,又四边形ABCD为矩形,∴以A为原点,AB为x轴,AD为y轴,AF为z轴,建立空间直角坐标系,∵AD=2,AB=AF=2EF=2,P是DF的中点,∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),(﹣1,0,2),(﹣2,﹣1,1),设异面直线BE与CP所成角的平面角为θ,则cosθ,∴异面直线BE与CP所成角的余弦值为.(2)A(0,0,0),C(2,2,0),F(0,0,2),D(0,2,0),设P(a,b,c),,0≤λ≤1,即(a,b,c﹣2)=λ(0,2,﹣2),解得a=0,b=2λ,c=2﹣2λ,∴P(0,2λ,2﹣2λ),(0,2λ,2﹣2λ),(2,2,0),设平面APC的法向量(x,y,z),则,取x=1,得(1,﹣1,),平面ADP的法向量(1,0,0),∵二面角D﹣AP﹣C的正弦值为,∴|cos|,解得,∴P(0,,),∴PF的长度|PF|.【点睛】本题考查了异面直线夹角,根据二面角求长度,意在考查学生的空间想象能力和计算能力.21、(1)(2)见解析【解析】
(1)由题得a,b,c的方程组求解即可(2)直线与直线恰关于轴对称,等价于的斜率互为相反数,即,整理.设直线的方程为,与椭
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宿州职业技术学院《西方音乐史II》2023-2024学年第二学期期末试卷
- 浙江省温州市温州中学2025届下学期期末联考高三生物试题试卷含解析
- 郑州商贸旅游职业学院《企业级应用开发实训》2023-2024学年第二学期期末试卷
- 宁波诺丁汉大学《制药工程专业外语》2023-2024学年第二学期期末试卷
- 江苏省无锡市新吴区新城中学2025年初三下-第二次联考化学试题试卷含解析
- 江西婺源茶业职业学院《广告策划设计》2023-2024学年第二学期期末试卷
- 木楼梯全球市场趋势分析考核试卷
- 电子专用材料在汽车电子中的应用考核试卷
- 玻璃熔化工艺与质量控制考核试卷
- 批发业销售团队激励与管理考核试卷
- 销售销售数据分析培训讲义
- 两位数除以一位数(有余数)计算题200道
- 产后早开奶好处健康宣教
- 2024届江苏省期无锡市天一实验校中考联考英语试题含答案
- 北师大版数学三年级下册《长方形的面积》
- 八年级黄金矩形(公开课)
- 住院医师规范化培训临床小讲课指南(2021年版)全文解读
- 岩石锚喷支护设计计算书
- 医院手卫生依从性观察表
- 某工程项目精细化管理宣贯课件
- 精装修算量与计价学习总结课件
评论
0/150
提交评论