2024高考数学一轮复习课后限时集训62随机事件的概率文北师大版_第1页
2024高考数学一轮复习课后限时集训62随机事件的概率文北师大版_第2页
2024高考数学一轮复习课后限时集训62随机事件的概率文北师大版_第3页
2024高考数学一轮复习课后限时集训62随机事件的概率文北师大版_第4页
2024高考数学一轮复习课后限时集训62随机事件的概率文北师大版_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE1-课后限时集训62随机事务的概率建议用时:45分钟一、选择题1.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并登记号码,统计结果如下:卡片号码12345678910取到次数138576131810119则取到号码为奇数的卡片的频率是()A.0.53 B.0.5C.0.47 D.0.37A[取到号码为奇数的卡片的次数为:13+5+6+18+11=53,则所求的频率为eq\f(53,100)=0.53.故选A.]2.甲、乙两人下棋,两人下成和棋的概率是eq\f(1,2),甲获胜的概率是eq\f(1,3),则甲不输的概率为()A.eq\f(5,6)B.eq\f(2,6)C.eq\f(1,6)D.eq\f(1,3)A[甲不输的概率P=eq\f(1,2)+eq\f(1,3)=eq\f(5,6),故选A.]3.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事务是()A.至少有一个黑球与都是黑球B.至少有一个黑球与都是红球C.至少有一个黑球与至少有一个红球D.恰有一个黑球与恰有两个黑球D[对于A:事务:“至少有一个黑球”与事务:“都是黑球”可以同时发生,∴A不正确;对于B:事务:“至少有一个黑球”与“都是红球”不能同时发生,但肯定会有一个发生,∴这两个事务是对立事务,∴B不正确;对于C:事务:“至少有一个黑球”与事务:“至少有一个红球”可以同时发生,如:一个红球与一个黑球,∴C不正确;对于D:事务:“恰有一个黑球”与事务:“恰有两个黑球”不能同时发生,但从口袋中任取两个球时还有可能两个都是红球,∴两个事务是互斥事务但不是对立事务,∴D正确.]4.依据某医疗探讨所的调查,某地区居民血型的分布为O型50%,A型15%,B型30%,AB型5%.现有一血液为A型病人须要输血,若在该地区任选一人,那么能为病人输血的概率为()A.15% B.20%C.45% D.65%D[∵某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%.现有能为A型病人输血的有O型和A型,故为病人输血的概率为50%+15%=65%,故选D.]5.对一批产品的长度(单位:mm)进行抽样检测,如图为检测结果的频率分布直方图,依据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是()A.0.09 B.0.20C.0.25 D.0.45D[利用统计图表可知在区间[25,30)上的频率为1-(0.02+0.04+0.06+0.03)×5=0.25,在区间[15,20)上的频率为0.04×5=0.2,故所求二等品的概率为0.45.]二、填空题6.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:排队人数01234≥5概率0.10.160.30.30.10.04则该营业窗口上午9点钟时,至少有2人排队的概率是________.0.74[由表格可得至少有2人排队的概率P=0.3+0.3+0.1+0.04=0.74.]7.(2024·西安模拟)口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.38,摸出白球的概率是0.32,那么摸出黑球的概率是________.0.3[从口袋中摸球,摸到红球、摸到黑球、摸到白球这三个事务是互斥的,因为摸出红球的概率是0.38,摸出白球的概率是0.32,且摸出黑球是摸出红球或摸出白球的对立事务,所以摸出黑球的概率是1-0.38-0.32=0.3.]8.袋中有红球和白球若干(都多于2个),从中随意取出两个小球,设恰有一个红球的概率为p1,没有红球的概率为p2,则至多有一个红球的概率为________.p1+p2[设“恰有一个红球”为事务A,“没有红球”为事务B.“至多有一个红球”为事务C,则C=A∪B.从而P(C)=P(A+B)=P(A)+P(B)=p1+p2.]三、解答题9.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的状况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.商品顾客人数甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)假如顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?[解](1)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为eq\f(200,1000)=0.2.(2)从统计表可以看出,在这1000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为eq\f(100+200,1000)=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为eq\f(200,1000)=0.2,顾客同时购买甲和丙的概率可以估计为eq\f(100+200+300,1000)=0.6,顾客同时购买甲和丁的概率可以估计为eq\f(100,1000)=0.1.所以,假如顾客购买了甲,则该顾客同时购买丙的可能性最大.10.某保险公司利用简洁随机抽样的方法,对投保的车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)01000200030004000车辆数(辆)500130100150120(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.[解](1)设A表示事务“赔付金额为3000元”,B表示事务“赔付金额为4000元”,以频率估计概率得P(A)=eq\f(150,1000)=0.15,P(B)=eq\f(120,1000)=0.12.由于投保额为2800元,赔付金额大于投保金额的情形是赔付3000和4000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事务“投保车辆中新司机获赔4000元”,由已知,样本车辆中车主是新司机的有0.1×1000=100(位),而赔付金额为4000元的车辆中车主为新司机的有0.2×120=24(位),所以样本车辆中新司机车主获赔金额为4000元的频率为eq\f(24,100)=0.24,由频率估计概率是P(C)=0.24.1.(2024·全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3B.0.4C.0.6D.0.7B[设“只用现金支付”为事务A,“既用现金支付也用非现金支付”为事务B,“不用现金支付”为事务C,则P(C)=1-P(A)-P(B)=1-0.45-0.15=0.4.故选B.]2.(2024·武汉模拟)我国古代数学名著《数书九章》有“米谷粒分”题,现有类似的题:粮仓开仓收粮,粮农送来米1534石,验得米夹谷,抽样取米一把,数得254粒夹谷28粒,则这批米内夹谷约为()A.134石 B.169石C.338石 D.454石B[由题意可知这批米内夹谷约为1534×eq\f(28,254)≈169石.故选B.]3.一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地随意抽取两次,每次只取一个,取得两个红球的概率为eq\f(7,15),取得两个绿球的概率为eq\f(1,15),则取得两个同颜色的球的概率为________;至少取得一个红球的概率为________.eq\f(8,15)eq\f(14,15)[由于“取得两个红球”与“取得两个绿球”是互斥事务,取得两个同色球,只需两互斥事务有一个发生即可,因而取得两个同色球的概率为P=eq\f(7,15)+eq\f(1,15)=eq\f(8,15).由于事务A“至少取得一个红球”与事务B“取得两个绿球”是对立事务,则至少取得一个红球的概率为P(A)=1-P(B)=1-eq\f(1,15)=eq\f(14,15).]4.某超市为了解顾客的购物量及结算时间等信息,支配一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数/(人)x3025y10结算时间/(分钟/人)11.522.53已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率).[解](1)由已知得25+y+10=55,x+30=45,所以x=15,y=20.该超市全部顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简洁随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为eq\f(1×15+1.5×30+2×25+2.5×20+3×10,100)=1.9(分钟).(2)设A表示事务“一位顾客一次购物的结算时间不超过2分钟”,A1,A2,A3分别表示事务“该顾客一次购物的结算时间为1分钟”、“该顾客一次购物的结算时间为1.5分钟”、“该顾客一次购物的结算时间为2分钟”.将频率视为概率得P(A1)=eq\f(15,100)=eq\f(3,20),P(A2)=eq\f(30,100)=eq\f(3,10),P(A3)=eq\f(25,100)=eq\f(1,4).因为A=A1+A2+A3,且A1,A2,A3是互斥事务,所以P(A)=P(A1+A2+A3)=P(A1)+P(A2)+P(A3)=eq\f(3,20)+eq\f(3,10)+eq\f(1,4)=eq\f(7,10).故一位顾客一次购物的结算时间不超过2分钟的概率为eq\f(7,10).1.某校高三(1)班50名学生参与1500m体能测试,其中23人成果为A,其余人成果都是B或C.从这50名学生中任抽1人,若抽得B的概率是0.4,则抽得C的概率是()A.0.14 B.0.20C.0.40 D.0.60A[抽得A的概率为eq\f(23,50),则抽得C的概率为1-eq\f(23,50)-0.4=0.14,故选A.]2.某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表:近20年六月份降雨量频率分布表降雨量70110140160200220频率eq\f(1,20)eq\f(4,20)eq\f(2,20)(2)假定今年6月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.[解](1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个.故近20年六月份降雨量频率分布表为:降雨量70110140160200220频率eq\f(1,20)eq\f(3,20)eq\f(4,20)eq\f

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论