湖北省鄂州市吴都中学2025届高三年级4月摸底考试数学试题_第1页
湖北省鄂州市吴都中学2025届高三年级4月摸底考试数学试题_第2页
湖北省鄂州市吴都中学2025届高三年级4月摸底考试数学试题_第3页
湖北省鄂州市吴都中学2025届高三年级4月摸底考试数学试题_第4页
湖北省鄂州市吴都中学2025届高三年级4月摸底考试数学试题_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省鄂州市吴都中学2025届高三年级4月摸底考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则的虚部是()A. B. C. D.2.已知集合,则()A. B.C. D.3.阅读下面的程序框图,运行相应的程序,程序运行输出的结果是()A.1.1 B.1 C.2.9 D.2.84.已知直线过双曲线C:的左焦点F,且与双曲线C在第二象限交于点A,若(O为坐标原点),则双曲线C的离心率为A. B. C. D.5.已知实数满足不等式组,则的最小值为()A. B. C. D.6.若函数的图象经过点,则函数图象的一条对称轴的方程可以为()A. B. C. D.7.若两个非零向量、满足,且,则与夹角的余弦值为()A. B. C. D.8.如图,在等腰梯形中,,,,为的中点,将与分别沿、向上折起,使、重合为点,则三棱锥的外接球的体积是()A. B.C. D.9.已知平面向量,,满足:,,则的最小值为()A.5 B.6 C.7 D.810.从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图:根据频率分布直方图,可知这部分男生的身高的中位数的估计值为A. B.C. D.11.函数,,则“的图象关于轴对称”是“是奇函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知抛物线,F为抛物线的焦点且MN为过焦点的弦,若,,则的面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的最小正周期是_______________,单调递增区间是__________.14.如果复数满足,那么______(为虚数单位).15.若向量满足,则实数的取值范围是____________.16.函数的定义域为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)当时,求不等式的解集;(2)若存在,使得不等式对一切恒成立,求实数的取值范围.18.(12分)已知,,函数的最小值为.(1)求证:;(2)若恒成立,求实数的最大值.19.(12分)如图,已知四棱锥,底面为边长为2的菱形,平面,,是的中点,.(Ⅰ)证明:;(Ⅱ)若为上的动点,求与平面所成最大角的正切值.20.(12分)已知函数,.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.21.(12分)已知函数,不等式的解集为.(1)求实数,的值;(2)若,,,求证:.22.(10分)已知函数()在定义域内有两个不同的极值点.(1)求实数的取值范围;(2)若有两个不同的极值点,,且,若不等式恒成立.求正实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

通过复数的乘除运算法则化简求解复数为:的形式,即可得到复数的虚部.【详解】由题可知,所以的虚部是1.故选:D.【点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题.2、B【解析】

先由得或,再计算即可.【详解】由得或,,,又,.故选:B【点睛】本题主要考查了集合的交集,补集的运算,考查学生的运算求解能力.3、C【解析】

根据程序框图的模拟过程,写出每执行一次的运行结果,属于基础题.【详解】初始值,第一次循环:,;第二次循环:,;第三次循环:,;第四次循环:,;第五次循环:,;第六次循环:,;第七次循环:,;第九次循环:,;第十次循环:,;所以输出.故选:C【点睛】本题考查了循环结构的程序框图的读取以及运行结果,属于基础题.4、B【解析】

直线的倾斜角为,易得.设双曲线C的右焦点为E,可得中,,则,所以双曲线C的离心率为.故选B.5、B【解析】

作出约束条件的可行域,在可行域内求的最小值即为的最小值,作,平移直线即可求解.【详解】作出实数满足不等式组的可行域,如图(阴影部分)令,则,作出,平移直线,当直线经过点时,截距最小,故,即的最小值为.故选:B【点睛】本题考查了简单的线性规划问题,解题的关键是作出可行域、理解目标函数的意义,属于基础题.6、B【解析】

由点求得的值,化简解析式,根据三角函数对称轴的求法,求得的对称轴,由此确定正确选项.【详解】由题可知.所以令,得令,得故选:B【点睛】本小题主要考查根据三角函数图象上点的坐标求参数,考查三角恒等变换,考查三角函数对称轴的求法,属于中档题.7、A【解析】

设平面向量与的夹角为,由已知条件得出,在等式两边平方,利用平面向量数量积的运算律可求得的值,即为所求.【详解】设平面向量与的夹角为,,可得,在等式两边平方得,化简得.故选:A.【点睛】本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.8、A【解析】

由题意等腰梯形中的三个三角形都是等边三角形,折叠成的三棱锥是正四面体,易求得其外接球半径,得球体积.【详解】由题意等腰梯形中,又,∴,是靠边三角形,从而可得,∴折叠后三棱锥是棱长为1的正四面体,设是的中心,则平面,,,外接球球心必在高上,设外接球半径为,即,∴,解得,球体积为.故选:A.【点睛】本题考查求球的体积,解题关键是由已知条件确定折叠成的三棱锥是正四面体.9、B【解析】

建立平面直角坐标系,将已知条件转化为所设未知量的关系式,再将的最小值转化为用该关系式表达的算式,利用基本不等式求得最小值.【详解】建立平面直角坐标系如下图所示,设,,且,由于,所以..所以,即..当且仅当时取得最小值,此时由得,当时,有最小值为,即,,解得.所以当且仅当时有最小值为.故选:B【点睛】本小题主要考查向量的位置关系、向量的模,考查基本不等式的运用,考查数形结合的数学思想方法,属于难题.10、C【解析】

由题可得,解得,则,,所以这部分男生的身高的中位数的估计值为,故选C.11、B【解析】

根据函数奇偶性的性质,结合充分条件和必要条件的定义进行判断即可.【详解】设,若函数是上的奇函数,则,所以,函数的图象关于轴对称.所以,“是奇函数”“的图象关于轴对称”;若函数是上的偶函数,则,所以,函数的图象关于轴对称.所以,“的图象关于轴对称”“是奇函数”.因此,“的图象关于轴对称”是“是奇函数”的必要不充分条件.故选:B.【点睛】本题主要考查充分条件和必要条件的判断,结合函数奇偶性的性质判断是解决本题的关键,考查推理能力,属于中等题.12、A【解析】

根据可知,再利用抛物线的焦半径公式以及三角形面积公式求解即可.【详解】由题意可知抛物线方程为,设点点,则由抛物线定义知,,则.由得,则.又MN为过焦点的弦,所以,则,所以.故选:A【点睛】本题考查抛物线的方程应用,同时也考查了焦半径公式等.属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、,,【解析】

化简函数的解析式,利用余弦函数的图象和性质求解即可.【详解】函数,最小正周期,令,,可得,,所以单调递增区间是,,.故答案为:,,,.【点睛】本题主要考查了二倍角的公式的应用,余弦函数的图象与性质,属于中档题.14、【解析】

把已知等式变形,再由复数代数形式的乘除运算化简,然后利用复数模的计算公式求解.【详解】∵,∴,∴,故答案为:.【点睛】本小题主要考查复数除法运算,考查复数的模的求法,属于基础题.15、【解析】

根据题意计算,解得答案.【详解】,故,解得.故答案为:.【点睛】本题考查了向量的数量积,意在考查学生的计算能力.16、【解析】

对数函数的定义域需满足真数大于0,再由指数型不等式求解出解集即可.【详解】对函数有意义,即.故答案为:【点睛】本题考查求对数函数的定义域,还考查了指数型不等式求解,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ).(Ⅱ).【解析】

(Ⅰ)时,根据绝对值不等式的定义去掉绝对值,求不等式的解集即可;(Ⅱ)不等式的解集为,等价于,求出在的最小值即可.【详解】(Ⅰ)当时,时,不等式化为,解得,即时,不等式化为,不等式恒成立,即时,不等式化为,解得,即综上所述,不等式的解集为(Ⅱ)不等式的解集为对任意恒成立当时,取得最小值为实数的取值范围是【点睛】本题考查了绝对值不等式的解法与应用问题,也考查了函数绝对值三角不等式的应用问题,属于常规题型.18、(1)见解析;(2)最大值为.【解析】

(1)将函数表示为分段函数,利用函数的单调性求出该函数的最小值,进而可证得结论成立;(2)由可得出,并将代数式与相乘,展开后利用基本不等式可求得的最小值,进而可得出实数的最大值.【详解】(1).当时,函数单调递减,则;当时,函数单调递增,则;当时,函数单调递增,则.综上所述,,所以;(2)因为恒成立,且,,所以恒成立,即.因为,当且仅当时等号成立,所以,实数的最大值为.【点睛】本题考查含绝对值函数最值的求解,同时也考查了利用基本不等式恒成立求参数,考查推理能力与计算能力,属于中等题.19、(Ⅰ)见解析;(Ⅱ).【解析】试题分析:(Ⅰ)由底面为边长为2的菱形,平面,,易证平面,可得;(Ⅱ)连结,由(Ⅰ)易知为与平面所成的角,在中,可求得.试题解析:(Ⅰ)∵四边形为菱形,且,∴为正三角形,又为中点,∴;又,∴,∵平面,又平面,∴,∴平面,又平面,∴;(Ⅱ)连结,由(Ⅰ)知平面,∴为与平面所成的角,在中,,最大当且仅当最短,即时最大,依题意,此时,在中,,∴,,∴与平面所成最大角的正切值为.考点:1.线线垂直证明;2.求线面角.20、(Ⅰ);(Ⅱ)最小值和最大值.【解析】试题分析:(1)由已知利用两角和与差的三角函数公式及倍角公式将的解析式化为一个复合角的三角函数式,再利用正弦型函数的最小正周期计算公式,即可求得函数的最小正周期;(2)由(1)得函数,分析它在闭区间上的单调性,可知函数在区间上是减函数,在区间上是增函数,由此即可求得函数在闭区间上的最大值和最小值.也可以利用整体思想求函数在闭区间上的最大值和最小值.由已知,有的最小正周期.(2)∵在区间上是减函数,在区间上是增函数,,,∴函数在闭区间上的最大值为,最小值为.考点:1.两角和与差的正弦公式、二倍角的正弦与余弦公式;2.三角函数的周期性和单调性.21、(1),.(2)见解析【解析】

(1)分三种情况讨论即可(2)将,的值代入,然后利用均值定理即可.【详解】解:(1)不等式可化为.即有或或.解得,或或.所以不等式的解集为,故,.(2)由(1)知,,即,由,得,,当且仅当,即,时等号成立.故,即.【点睛】考查绝对值不等式的解法以及用均值定理证明不等式,中档题.22、(1);(2).【解析】

(1)求导得到有两个不相等实根,令,计算函数单调区间得到值域,得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论