四川省乐山四校2025年高三线上2月29日数学试题高考模拟题(三)_第1页
四川省乐山四校2025年高三线上2月29日数学试题高考模拟题(三)_第2页
四川省乐山四校2025年高三线上2月29日数学试题高考模拟题(三)_第3页
四川省乐山四校2025年高三线上2月29日数学试题高考模拟题(三)_第4页
四川省乐山四校2025年高三线上2月29日数学试题高考模拟题(三)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省乐山四校2025年高三线上2月29日数学试题高考模拟题(三)考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的值域为,函数,则的图象的对称中心为()A. B.C. D.2.三棱锥中,侧棱底面,,,,,则该三棱锥的外接球的表面积为()A. B. C. D.3.已知a,b是两条不同的直线,α,β是两个不同的平面,且a⊂α,b⊂β,aβ,bα,则“ab“是“αβ”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.若复数满足(为虚数单位),则其共轭复数的虚部为()A. B. C. D.5.半正多面体(semiregularsolid)亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为()A. B. C. D.6.设,,则()A. B.C. D.7.函数图像可能是()A. B. C. D.8.双曲线的右焦点为,过点且与轴垂直的直线交两渐近线于两点,与双曲线的其中一个交点为,若,且,则该双曲线的离心率为()A. B. C. D.9.设曲线在点处的切线方程为,则()A.1 B.2 C.3 D.410.已知集合,,则()A. B.C. D.11.已知直线和平面,若,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.不充分不必要12.双曲线x26-y23=1的渐近线与圆(x-3)2+y2=A.3 B.2C.3 D.6二、填空题:本题共4小题,每小题5分,共20分。13.函数在的零点个数为_________.14.设为偶函数,且当时,;当时,.关于函数的零点,有下列三个命题:①当时,存在实数m,使函数恰有5个不同的零点;②若,函数的零点不超过4个,则;③对,,函数恰有4个不同的零点,且这4个零点可以组成等差数列.其中,正确命题的序号是_______.15.若椭圆:的一个焦点坐标为,则的长轴长为_______.16.已知数列是等比数列,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,为边上一点,,.(1)求;(2)若,,求.18.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程以及曲线的直角坐标方程;(2)若直线与曲线、曲线在第一象限交于两点,且,点的坐标为,求的面积.19.(12分)已知公比为正数的等比数列的前项和为,且,.(1)求数列的通项公式;(2)设,求数列的前项和.20.(12分)某中学准备组建“文科”兴趣特长社团,由课外活动小组对高一学生文科、理科进行了问卷调查,问卷共100道题,每题1分,总分100分,该课外活动小组随机抽取了200名学生的问卷成绩(单位:分)进行统计,将数据按照,,,,分成5组,绘制的频率分布直方图如图所示,若将不低于60分的称为“文科方向”学生,低于60分的称为“理科方向”学生.理科方向文科方向总计男110女50总计(1)根据已知条件完成下面列联表,并据此判断是否有99%的把握认为是否为“文科方向”与性别有关?(2)将频率视为概率,现在从该校高一学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中“文科方向”的人数为,若每次抽取的结果是相互独立的,求的分布列、期望和方差.参考公式:,其中.参考临界值:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82821.(12分)在中,内角,,所对的边分别是,,,,,.(Ⅰ)求的值;(Ⅱ)求的值.22.(10分)已知顶点是坐标原点的抛物线的焦点在轴正半轴上,圆心在直线上的圆与轴相切,且关于点对称.(1)求和的标准方程;(2)过点的直线与交于,与交于,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

由值域为确定的值,得,利用对称中心列方程求解即可【详解】因为,又依题意知的值域为,所以得,,所以,令,得,则的图象的对称中心为.故选:B【点睛】本题考查三角函数的图像及性质,考查函数的对称中心,重点考查值域的求解,易错点是对称中心纵坐标错写为02.B【解析】由题,侧棱底面,,,,则根据余弦定理可得,的外接圆圆心三棱锥的外接球的球心到面的距离则外接球的半径,则该三棱锥的外接球的表面积为点睛:本题考查的知识点是球内接多面体,熟练掌握球的半径公式是解答的关键.3.D【解析】

根据面面平行的判定及性质求解即可.【详解】解:a⊂α,b⊂β,a∥β,b∥α,由a∥b,不一定有α∥β,α与β可能相交;反之,由α∥β,可得a∥b或a与b异面,∴a,b是两条不同的直线,α,β是两个不同的平面,且a⊂α,b⊂β,a∥β,b∥α,则“a∥b“是“α∥β”的既不充分也不必要条件.故选:D.【点睛】本题主要考查充分条件与必要条件的判断,考查面面平行的判定与性质,属于基础题.4.D【解析】

由已知等式求出z,再由共轭复数的概念求得,即可得虚部.【详解】由zi=1﹣i,∴z=,所以共轭复数=-1+,虚部为1故选D.【点睛】本题考查复数代数形式的乘除运算和共轭复数的基本概念,属于基础题.5.D【解析】

根据三视图作出该二十四等边体如下图所示,求出该几何体的棱长,可以将该几何体看作是相应的正方体沿各棱的中点截去8个三棱锥所得到的,可求出其体积.【详解】如下图所示,将该二十四等边体的直观图置于棱长为2的正方体中,由三视图可知,该几何体的棱长为,它是由棱长为2的正方体沿各棱中点截去8个三棱锥所得到的,该几何体的体积为,故选:D.【点睛】本题考查三视图,几何体的体积,对于二十四等边体比较好的处理方式是由正方体各棱的中点得到,属于中档题.6.D【解析】

由不等式的性质及换底公式即可得解.【详解】解:因为,,则,且,所以,,又,即,则,即,故选:D.【点睛】本题考查了不等式的性质及换底公式,属基础题.7.D【解析】

先判断函数的奇偶性可排除选项A,C,当时,可分析函数值为正,即可判断选项.【详解】,,即函数为偶函数,故排除选项A,C,当正数越来越小,趋近于0时,,所以函数,故排除选项B,故选:D【点睛】本题主要考查了函数的奇偶性,识别函数的图象,属于中档题.8.D【解析】

根据已知得本题首先求出直线与双曲线渐近线的交点,再利用,求出点,因为点在双曲线上,及,代入整理及得,又已知,即可求出离心率.【详解】由题意可知,代入得:,代入双曲线方程整理得:,又因为,即可得到,故选:D.【点睛】本题主要考查的是双曲线的简单几何性质和向量的坐标运算,离心率问题关键寻求关于,,的方程或不等式,由此计算双曲线的离心率或范围,属于中档题.9.D【解析】

利用导数的几何意义得直线的斜率,列出a的方程即可求解【详解】因为,且在点处的切线的斜率为3,所以,即.故选:D【点睛】本题考查导数的几何意义,考查运算求解能力,是基础题10.A【解析】

根据对数性质可知,再根据集合的交集运算即可求解.【详解】∵,集合,∴由交集运算可得.故选:A.【点睛】本题考查由对数的性质比较大小,集合交集的简单运算,属于基础题.11.B【解析】

由线面关系可知,不能确定与平面的关系,若一定可得,即可求出答案.【详解】,不能确定还是,,当时,存在,,由又可得,所以“”是“”的必要不充分条件,故选:B【点睛】本题主要考查了必要不充分条件,线面垂直,线线垂直的判定,属于中档题.12.A【解析】

由圆心到渐近线的距离等于半径列方程求解即可.【详解】双曲线的渐近线方程为y=±22x,圆心坐标为(3,0).由题意知,圆心到渐近线的距离等于圆的半径r,即r=±答案:A【点睛】本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.1【解析】

本问题转化为曲线交点个数问题,在同一直角坐标系内,画出函数的图象,利用数形结合思想进行求解即可.【详解】问题函数在的零点个数,可以转化为曲线交点个数问题.在同一直角坐标系内,画出函数的图象,如下图所示:由图象可知:当时,两个函数只有一个交点.故答案为:1【点睛】本题考查了求函数的零点个数问题,考查了转化思想和数形结合思想.14.①②③【解析】

根据偶函数的图象关于轴对称,利用已知中的条件作出偶函数的图象,利用图象对各个选项进行判断即可.【详解】解:当时又因为为偶函数可画出的图象,如下所示:可知当时有5个不同的零点;故①正确;若,函数的零点不超过4个,即,与的交点不超过4个,时恒成立又当时,在上恒成立在上恒成立由于偶函数的图象,如下所示:直线与图象的公共点不超过个,则,故②正确;对,偶函数的图象,如下所示:,使得直线与恰有4个不同的交点点,且相邻点之间的距离相等,故③正确.故答案为:①②③【点睛】本题考查函数方程思想,数形结合思想,属于难题.15.【解析】

由焦点坐标得从而可求出,继而得到椭圆的方程,即可求出长轴长.【详解】解:因为一个焦点坐标为,则,即,解得或由表示的是椭圆,则,所以,则椭圆方程为所以.故答案为:.【点睛】本题考查了椭圆的标准方程,考查了椭圆的几何意义.本题的易错点是忽略,从而未对的两个值进行取舍.16.【解析】

根据等比数列通项公式,首先求得,然后求得.【详解】设的公比为,由,得,故.故答案为:【点睛】本小题主要考查等比数列通项公式的基本量计算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)4【解析】

(1),利用两角差的正弦公式计算即可;(2)设,在中,用正弦定理将用x表示,在中用一次余弦定理即可解决.【详解】(1)∵,∴,所以,.(2)∵,∴设,,在中,由正弦定理得,,∴,∴,∵,∴∴.【点睛】本题考查两角差的正弦公式以及正余弦定理解三角形,考查学生的运算求解能力,是一道容易题.18.(1)的极坐标方程为,的直角坐标方程为(2)【解析】

(1)先把曲线的参数方程消参后,转化为普通方程,再利用求得极坐标方程.将,化为,再利用求得曲线的普通方程.(2)设直线的极角,代入,得,将代入,得,由,得,即,从而求得,,从而求得,再利用求解.【详解】(1)依题意,曲线,即,故,即.因为,故,即,即.(2)将代入,得,将代入,得,由,得,得,解得,则.又,故,故的面积.【点睛】本题考查极坐标方程与直角坐标方程、参数方程与普通方程的转化、极坐标的几何意义,还考查推理论证能力以及数形结合思想,属于中档题.19.(1)(2)【解析】

(1)判断公比不为1,运用等比数列的求和公式,解方程可得公比,进而得到所求通项公式;(2)求得,运用数列的错位相减法求和,以及等比数列的求和公式,计算可得所求和.【详解】解:(1)设公比为正数的等比数列的前项和为,且,,可得时,,不成立;当时,,即,解得(舍去),则;(2),前项和,,两式相减可得,化简可得.【点睛】本题考查等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,考查方程思想和运算能力,属于中档题.20.(1)列联表见解析,有;(2)分布列见解析,,.【解析】

(1)由频率分布直方图可得分数在、之间的学生人数,可得列联表.根据列联表计算的值,结合参考临界值表可得到结论;(2)从该校高一学生中随机抽取1人,求出该人为“文科方向”的概率.由题意,求出分布列,根据公式求出期望和方差.【详解】(1)由频率分布直方图可得分数在之间的学生人数为,在之间的学生人数为,所以低于60分的学生人数为120.因此列联表为理科方向文科方向总计男8030110女405090总计12080200又,所以有99%的把握认为是否为“文科方向”与性别有关.(2)易知从该校高一学生中随机抽取1人,则该人为“文科方向”的概率为.依题意知,所以(),所以的分布列为0123P所以期望,方差.【点睛】本题考查独立性检验,考查离散型随机变量的分布列、期望和方差,属于中档题.21.(Ⅰ)(Ⅱ)【解析】

(Ⅰ)根据正弦定理先求得边c,然后由余弦定理可求得边b;(Ⅱ)结合二倍角公式及和差公式,即可求得本题答案.【详解】(Ⅰ)因为,由正弦定理可得,,又,所以,所以根据余弦定理得,,解得,;(Ⅱ)因为,所以,,,则.【点睛】本题主要考查利用正余弦定理解三角形,以及利用二倍角公式及和差公式求值,属基础题.22.(1),;(2)证明见解析.【解析】分析:(1)设的标准方程为,由题意可设.结合中点坐标公式计算可得的标准方程为.半径,则的标准方程为.(2)设的斜率为,则其方程为,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论