河南省重点中学2025届高三下学期第四次质量检查数学试题_第1页
河南省重点中学2025届高三下学期第四次质量检查数学试题_第2页
河南省重点中学2025届高三下学期第四次质量检查数学试题_第3页
河南省重点中学2025届高三下学期第四次质量检查数学试题_第4页
河南省重点中学2025届高三下学期第四次质量检查数学试题_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省重点中学2025届高三下学期第四次质量检查数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合,,若,则()A. B. C. D.2.体育教师指导4个学生训练转身动作,预备时,4个学生全部面朝正南方向站成一排.训练时,每次都让3个学生“向后转”,若4个学生全部转到面朝正北方向,则至少需要“向后转”的次数是()A.3 B.4 C.5 D.63.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是()A. B. C. D.4.若复数满足,则()A. B. C.2 D.5.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]6.设是等差数列的前n项和,且,则()A. B. C.1 D.27.已知向量,,则向量在向量上的投影是()A. B. C. D.8.已知某超市2018年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是()A.该超市2018年的12个月中的7月份的收益最高B.该超市2018年的12个月中的4月份的收益最低C.该超市2018年1-6月份的总收益低于2018年7-12月份的总收益D.该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元9.已知函数若函数在上零点最多,则实数的取值范围是()A. B. C. D.10.为了得到函数的图象,只需把函数的图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度11.如图,已知直线与抛物线相交于A,B两点,且A、B两点在抛物线准线上的投影分别是M,N,若,则的值是()A. B. C. D.12.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}时,A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.∅二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系中,双曲线的右准线与渐近线的交点在抛物线上,则实数的值为________.14.为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量与时间的函数关系为(如图所示),实验表明,当药物释放量对人体无害.(1)______;(2)为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过______分钟人方可进入房间.15.如图所示,在直角梯形中,,、分别是、上的点,,且(如图①).将四边形沿折起,连接、、(如图②).在折起的过程中,则下列表述:①平面;②四点、、、可能共面;③若,则平面平面;④平面与平面可能垂直.其中正确的是__________.16.已知等比数列的各项均为正数,,则的值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,函数.(Ⅰ)判断函数的单调性;(Ⅱ)若时,对任意,不等式恒成立,求实数的最小值.18.(12分)如图,在四棱锥中,侧面为等边三角形,且垂直于底面,,分别是的中点.(1)证明:平面平面;(2)已知点在棱上且,求直线与平面所成角的余弦值.19.(12分)已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.(1)求圆的方程;(2)设直线ax﹣y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;(3)在(2)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(﹣2,4),若存在,求出实数a的值;若不存在,请说明理由.20.(12分)如图,在多面体中,四边形是菱形,,,,平面,,,是的中点.(Ⅰ)求证:平面平面;(ⅠⅠ)求直线与平面所成的角的正弦值.21.(12分)如图,在四棱锥中,底面为菱形,底面,.(1)求证:平面;(2)若直线与平面所成的角为,求平面与平面所成锐二面角的余弦值.22.(10分)已知四棱锥中,底面为等腰梯形,,,,丄底面.(1)证明:平面平面;(2)过的平面交于点,若平面把四棱锥分成体积相等的两部分,求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

根据交集的结果可得是集合的元素,代入方程后可求的值,从而可求.【详解】依题意可知是集合的元素,即,解得,由,解得.【点睛】本题考查集合的交,注意根据交集的结果确定集合中含有的元素,本题属于基础题.2、B【解析】

通过列举法,列举出同学的朝向,然后即可求出需要向后转的次数.【详解】“正面朝南”“正面朝北”分别用“∧”“∨”表示,利用列举法,可得下表,原始状态第1次“向后转”第2次“向后转”第3次“向后转”第4次“向后转”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次数为4次.故选:B.【点睛】本题考查的是求最小推理次数,一般这类题型构造较为巧妙,可通过列举的方法直观感受,属于基础题.3、C【解析】令圆的半径为1,则,故选C.4、D【解析】

把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式计算.【详解】解:由题意知,,,∴,故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法.5、B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.6、C【解析】

利用等差数列的性质化简已知条件,求得的值.【详解】由于等差数列满足,所以,,.故选:C【点睛】本小题主要考查等差数列的性质,属于基础题.7、A【解析】

先利用向量坐标运算求解,再利用向量在向量上的投影公式即得解【详解】由于向量,故向量在向量上的投影是.故选:A【点睛】本题考查了向量加法、减法的坐标运算和向量投影的概念,考查了学生概念理解,数学运算的能力,属于中档题.8、D【解析】

用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项.【详解】用收入减去支出,求得每月收益(万元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A选项说法正确;月收益最低,B选项说法正确;月总收益万元,月总收益万元,所以前个月收益低于后六个月收益,C选项说法正确,后个月收益比前个月收益增长万元,所以D选项说法错误.故选D.【点睛】本小题主要考查图表分析,考查收益的计算方法,属于基础题.9、D【解析】

将函数的零点个数问题转化为函数与直线的交点的个数问题,画出函数的图象,易知直线过定点,故与在时的图象必有两个交点,故只需与在时的图象有两个交点,再与切线问题相结合,即可求解.【详解】由图知与有个公共点即可,即,当设切点,则,.故选:D.【点睛】本题考查了函数的零点个数的问题,曲线的切线问题,注意运用转化思想和数形结合思想,属于较难的压轴题.10、D【解析】

通过变形,通过“左加右减”即可得到答案.【详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.【点睛】本题主要考查三角函数的平移变换,难度不大.11、C【解析】

直线恒过定点,由此推导出,由此能求出点的坐标,从而能求出的值.【详解】设抛物线的准线为,直线恒过定点,如图过A、B分别作于M,于N,由,则,点B为AP的中点、连接OB,则,∴,点B的横坐标为,∴点B的坐标为,把代入直线,解得,故选:C.【点睛】本题考查直线与圆锥曲线中参数的求法,考查抛物线的性质,是中档题,解题时要注意等价转化思想的合理运用,属于中档题.12、B【解析】试题分析:由集合A中的函数y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函数考点:交集及其运算.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

求出双曲线的右准线与渐近线的交点坐标,并将该交点代入抛物线的方程,即可求出实数的方程.【详解】双曲线的半焦距为,则双曲线的右准线方程为,渐近线方程为,所以,该双曲线右准线与渐近线的交点为.由题意得,解得.故答案为:.【点睛】本题考查利用抛物线上的点求参数,涉及到双曲线的准线与渐近线方程的应用,考查计算能力,属于中等题.14、240【解析】

(1)由时,,即可得出的值;(2)解不等式组,即可得出答案.【详解】(1)由图可知,当时,,即(2)由题意可得,解得则为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过分钟人方可进入房间.故答案为:(1)2;(2)40【点睛】本题主要考查了分段函数的应用,属于中档题.15、①③【解析】

连接、交于点,取的中点,证明四边形为平行四边形,可判断命题①的正误;利用线面平行的性质定理和空间平行线的传递性可判断命题②的正误;连接,证明出,结合线面垂直和面面垂直的判定定理可判断命题③的正误;假设平面与平面垂直,利用面面垂直的性质定理可判断命题④的正误.综合可得出结论.【详解】对于命题①,连接、交于点,取的中点、,连接、,如下图所示:则且,四边形是矩形,且,为的中点,为的中点,且,且,四边形为平行四边形,,即,平面,平面,平面,命题①正确;对于命题②,,平面,平面,平面,若四点、、、共面,则这四点可确定平面,则,平面平面,由线面平行的性质定理可得,则,但四边形为梯形且、为两腰,与相交,矛盾.所以,命题②错误;对于命题③,连接、,设,则,在中,,,则为等腰直角三角形,且,,,且,由余弦定理得,,,又,,平面,平面,,,、为平面内的两条相交直线,所以,平面,平面,平面平面,命题③正确;对于命题④,假设平面与平面垂直,过点在平面内作,平面平面,平面平面,,平面,平面,平面,,,,,,,又,平面,平面,.,平面,平面,.,,显然与不垂直,命题④错误.故答案为:①③.【点睛】本题考查立体几何综合问题,涉及线面平行、面面垂直的证明、以及点共面的判断,考查推理能力,属于中等题.16、【解析】

运用等比数列的通项公式,即可解得.【详解】解:,,,,,,,,,,,.故答案为:.【点睛】本题考查等比数列的通项公式及应用,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)故函数在上单调递增,在上单调递减;(2).【解析】试题分析:(Ⅰ)根据题意得到的解析式和定义域,求导后根据导函数的符号判断单调性.(Ⅱ)分析题意可得对任意,恒成立,构造函数,则有对任意,恒成立,然后通过求函数的最值可得所求.试题解析:(I)由题意得,,∴.当时,,函数在上单调递增;当时,令,解得;令,解得.故函数在上单调递增,在上单调递减.综上,当时,函数在上单调递增;当时,函数在上单调递增,在上单调递减.(II)由题意知.,当时,函数单调递增.不妨设,又函数单调递减,所以原问题等价于:当时,对任意,不等式恒成立,即对任意,恒成立.记,由题意得在上单调递减.所以对任意,恒成立.令,,则在上恒成立.故,而在上单调递增,所以函数在上的最大值为.由,解得.故实数的最小值为.18、(1)证明见解析;(2).【解析】

(1)由平面几何知识可得出四边形是平行四边形,可得面,再由面面平行的判定可证得面面平行;(2)由(1)可知,两两垂直,故建立空间直角坐标系,可求得面PAB的法向量,再运用线面角的向量求法,可求得直线与平面所成角的余弦值.【详解】(1),,又,,,而、分别是、的中点,,故面,又且,故四边形是平行四边形,面,又,是面内的两条相交直线,故面面.(2)由(1)可知,两两垂直,故建系如图所示,则,,,,设是平面PAB的法向量,,令,则,,直线NE与平面所成角的余弦值为.【点睛】本题考查空间的面面平行的判定,以及线面角的空间向量的求解方法,属于中档题.19、(2)(x﹣2)2+y2=2.(2)().(3)存在,【解析】

(2)设圆心为M(m,0),根据相切得到,计算得到答案.(2)把直线ax﹣y+5=0,代入圆的方程,计算△=4(5a﹣2)2﹣4(a2+2)>0得到答案.(3)l的方程为,即x+ay+2﹣4a=0,过点M(2,0),计算得到答案.【详解】(2)设圆心为M(m,0)(m∈Z).由于圆与直线4x+3y﹣29=0相切,且半径为5,所以,即|4m﹣29|=2.因为m为整数,故m=2.故所求圆的方程为(x﹣2)2+y2=2.(2)把直线ax﹣y+5=0,即y=ax+5,代入圆的方程,消去y,整理得(a2+2)x2+2(5a﹣2)x+2=0,由于直线ax﹣y+5=0交圆于A,B两点,故△=4(5a﹣2)2﹣4(a2+2)>0,即22a2﹣5a>0,由于a>0,解得a,所以实数a的取值范围是().(3)设符合条件的实数a存在,则直线l的斜率为,l的方程为,即x+ay+2﹣4a=0,由于l垂直平分弦AB,故圆心M(2,0)必在l上,所以2+0+2﹣4a=0,解得.由于,故存在实数使得过点P(﹣2,4)的直线l垂直平分弦AB.【点睛】本题考查了直线和圆的位置关系,意在考查学生的计算能力和转化能力.20、(Ⅰ)详见解析;(Ⅱ).【解析】试题分析:(Ⅰ)连接交于,得,所以面,又,得面,即可利用面面平行的判定定理,证得结论;(Ⅱ)如图,以O为坐标原点,建立空间直角坐标系,求的平面的一个法向量,利用向量和向量夹角公式,即可求解与平面所成角的正弦值.试题解析:(Ⅰ)连接BD交AC于O,易知O是BD的中点,故OG//BE,BE面BEF,OG在面BEF外,所以OG//面BEF;又EF//AC,AC在面BEF外,AC//面BEF,又AC与OG相交于点O,面ACG有两条相交直线与面BEF平行,故面ACG∥面BEF;(Ⅱ)如图,以O为坐标原点,分别以OC、OD、OF为x、y、z轴建立空间直角坐标系,则,,,,,,,设面ABF的法向量为,依题意有,,令,,,,,直线AD与面ABF成的角的正弦值是.21、(1)证明

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论