长春市第十一中学2025届高三高考模拟考试(二)数学试题_第1页
长春市第十一中学2025届高三高考模拟考试(二)数学试题_第2页
长春市第十一中学2025届高三高考模拟考试(二)数学试题_第3页
长春市第十一中学2025届高三高考模拟考试(二)数学试题_第4页
长春市第十一中学2025届高三高考模拟考试(二)数学试题_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长春市第十一中学2025届高三高考模拟考试(二)数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数(为虚数单位)的实部与虚部相等,则的值为()A. B. C. D.2.已知,则()A.5 B. C.13 D.3.某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是()A. B. C. D.4.欧拉公式为,(虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数位于复平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.某市政府决定派遣名干部(男女)分成两个小组,到该市甲、乙两个县去检查扶贫工作,若要求每组至少人,且女干部不能单独成组,则不同的派遣方案共有()种A. B. C. D.6.定义在R上的偶函数f(x)满足f(x+2)=f(x),当x∈[﹣3,﹣2]时,f(x)=﹣x﹣2,则()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)7.复数,若复数在复平面内对应的点关于虚轴对称,则等于()A. B. C. D.8.定义在上的奇函数满足,若,,则()A. B.0 C.1 D.29.设,则关于的方程所表示的曲线是()A.长轴在轴上的椭圆 B.长轴在轴上的椭圆C.实轴在轴上的双曲线 D.实轴在轴上的双曲线10.在平面直角坐标系中,已知点,,若动点满足,则的取值范围是()A. B.C. D.11.若复数满足,其中为虚数单位,是的共轭复数,则复数()A. B. C.4 D.512.的展开式中含的项的系数为()A. B.60 C.70 D.80二、填空题:本题共4小题,每小题5分,共20分。13.根据记载,最早发现勾股定理的人应是我国西周时期的数学家商高,商高曾经和周公讨论过“勾3股4弦5”的问题.现有满足“勾3股4弦5”,其中“股”,为“弦”上一点(不含端点),且满足勾股定理,则______.14.已知向量,且,则实数的值是__________.15.设变量,满足约束条件,则目标函数的最小值为______.16.在中,角的对边分别为,且,若外接圆的半径为,则面积的最大值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,曲线:(为参数,),曲线:(为参数).若曲线和相切.(1)在以为极点,轴非负半轴为极轴的极坐标系中,求曲线的普通方程;(2)若点,为曲线上两动点,且满足,求面积的最大值.18.(12分)2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下:研发费用(百万元)2361013151821销量(万盒)1122.53.53.54.56(1)求与的相关系数精确到0.01,并判断与的关系是否可用线性回归方程模型拟合?(规定:时,可用线性回归方程模型拟合);(2)该药企准备生产药品的三类不同的剂型,,,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型,,合格的概率分别为,,,第二次检测时,三类剂型,,合格的概率分别为,,.两次检测过程相互独立,设经过两次检测后,,三类剂型合格的种类数为,求的数学期望.附:(1)相关系数(2),,,.19.(12分)如图,在正四棱柱中,已知,.(1)求异面直线与直线所成的角的大小;(2)求点到平面的距离.20.(12分)在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程与曲线的直角坐标方程;(2)设为曲线上位于第一,二象限的两个动点,且,射线交曲线分别于,求面积的最小值,并求此时四边形的面积.21.(12分)在直角坐标系中,已知圆,以原点为极点,x轴正半轴为极轴建立极坐标系,已知直线平分圆M的周长.(1)求圆M的半径和圆M的极坐标方程;(2)过原点作两条互相垂直的直线,其中与圆M交于O,A两点,与圆M交于O,B两点,求面积的最大值.22.(10分)已知△ABC的两个顶点A,B的坐标分别为(,0),(,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=2,动点C的轨迹为曲线G.(1)求曲线G的方程;(2)设直线l与曲线G交于M,N两点,点D在曲线G上,是坐标原点,判断四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

利用复数的除法,以及复数的基本概念求解即可.【详解】,又的实部与虚部相等,,解得.故选:C【点睛】本题主要考查复数的除法运算,复数的概念运用.2.C【解析】

先化简复数,再求,最后求即可.【详解】解:,,故选:C【点睛】考查复数的运算,是基础题.3.C【解析】由三视图可知,该几何体是下部是半径为2,高为1的圆柱的一半,上部为底面半径为2,高为2的圆锥的一半,所以,半圆柱的体积为,上部半圆锥的体积为,所以该几何体的体积为,故应选.4.A【解析】

计算,得到答案.【详解】根据题意,故,表示的复数在第一象限.故选:.【点睛】本题考查了复数的计算,意在考查学生的计算能力和理解能力.5.C【解析】

在所有两组至少都是人的分组中减去名女干部单独成一组的情况,再将这两组分配,利用分步乘法计数原理可得出结果.【详解】两组至少都是人,则分组中两组的人数分别为、或、,

又因为名女干部不能单独成一组,则不同的派遣方案种数为.故选:C.【点睛】本题考查排列组合的综合问题,涉及分组分配问题,考查计算能力,属于中等题.6.B【解析】

根据函数的周期性以及x∈[﹣3,﹣2]的解析式,可作出函数f(x)在定义域上的图象,由此结合选项判断即可.【详解】由f(x+2)=f(x),得f(x)是周期函数且周期为2,先作出f(x)在x∈[﹣3,﹣2]时的图象,然后根据周期为2依次平移,并结合f(x)是偶函数作出f(x)在R上的图象如下,选项A,,所以,选项A错误;选项B,因为,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),选项B正确;选项C,,所以,即,选项C错误;选项D,,选项D错误.故选:B.【点睛】本题考查函数性质的综合运用,考查函数值的大小比较,考查数形结合思想,属于中档题.7.A【解析】

先通过复数在复平面内对应的点关于虚轴对称,得到,再利用复数的除法求解.【详解】因为复数在复平面内对应的点关于虚轴对称,且复数,所以所以故选:A【点睛】本题主要考查复数的基本运算和几何意义,属于基础题.8.C【解析】

首先判断出是周期为的周期函数,由此求得所求表达式的值.【详解】由已知为奇函数,得,而,所以,所以,即的周期为.由于,,,所以,,,.所以,又,所以.故选:C【点睛】本小题主要考查函数的奇偶性和周期性,属于基础题.9.C【解析】

根据条件,方程.即,结合双曲线的标准方程的特征判断曲线的类型.【详解】解:∵k>1,∴1+k>0,k2-1>0,

方程,即,表示实轴在y轴上的双曲线,

故选C.【点睛】本题考查双曲线的标准方程的特征,依据条件把已知的曲线方程化为是关键.10.D【解析】

设出的坐标为,依据题目条件,求出点的轨迹方程,写出点的参数方程,则,根据余弦函数自身的范围,可求得结果.【详解】设,则∵,∴∴∴为点的轨迹方程∴点的参数方程为(为参数)则由向量的坐标表达式有:又∵∴故选:D【点睛】考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,属于中档题.求解轨迹方程的方法有:①直接法;②定义法;③相关点法;④参数法;⑤待定系数法11.D【解析】

根据复数的四则运算法则先求出复数z,再计算它的模长.【详解】解:复数z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故选D.【点睛】本题主要考查了复数的计算问题,要求熟练掌握复数的四则运算以及复数长度的计算公式,是基础题.12.B【解析】

展开式中含的项是由的展开式中含和的项分别与前面的常数项和项相乘得到,由二项式的通项,可得解【详解】由题意,展开式中含的项是由的展开式中含和的项分别与前面的常数项和项相乘得到,所以的展开式中含的项的系数为.故选:B【点睛】本题考查了二项式系数的求解,考查了学生综合分析,数学运算的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

先由等面积法求得,利用向量几何意义求解即可.【详解】由等面积法可得,依题意可得,,所以.故答案为:【点睛】本题考查向量的数量积,重点考查向量数量积的几何意义,属于基础题.14.【解析】∵=(1,2),=(x,1),则=+2=(1,2)+2(x,1)=(1+2x,4),=2﹣=2(1,2)﹣(x,1)=(2﹣x,3),∵∴3(1+2x)﹣4(2﹣x)=1,解得:x=.点睛:由向量的数乘和坐标加减法运算求得,然后利用向量共线的坐标表示列式求解x的值.若=(a1,a2),=(b1,b2),则⊥⇔a1a2+b1b2=1,∥⇔a1b2﹣a2b1=1.15.-8【解析】

通过约束条件,画出可行域,将问题转化为直线在轴截距最大的问题,通过图像解决.【详解】由题意可得可行域如下图所示:令,则即为在轴截距的最大值由图可知:当过时,在轴截距最大本题正确结果:【点睛】本题考查线性规划中的型最值的求解问题,关键在于将所求最值转化为在轴截距的问题.16.【解析】

由正弦定理,三角函数恒等变换的应用化简已知等式,结合范围可求的值,利用正弦定理可求的值,进而根据余弦定理,基本不等式可求的最大值,进而根据三角形的面积公式即可求解.【详解】解:,由正弦定理可得:,,,又,,,即,可得:,外接圆的半径为,,解得,由余弦定理,可得,又,(当且仅当时取等号),即最大值为4,面积的最大值为.故答案为:.【点睛】本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,基本不等式,三角形的面积公式在解三角形中的应用,考查了转化思想,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)【解析】

(1)消去参数,将圆的参数方程,转化为普通方程,再由圆心到直线的距离等于半径,可求得圆的普通方程,最后利用求得圆的极坐标方程.(2)利用圆的参数方程以及辅助角公式,由此求得的面积的表达式,再由三角函数最值的求法,求得三角形面积的最大值.【详解】(1)由题意得:,:因为曲线和相切,所以,即:;(2)设,所以所以当时,面积最大值为【点睛】本小题主要考查参数方程转化为普通方程,考查直角坐标方程转化为极坐标方程,考查利用参数的方法求三角形面积的最值,属于中档题.18.(1)0.98;可用线性回归模型拟合.(2)【解析】

(1)根据题目提供的数据求出,代入相关系数公式求出,根据的大小来确定结果;(2)求出药品的每类剂型经过两次检测后合格的概率,发现它们相同,那么经过两次检测后,,三类剂型合格的种类数为,服从二项分布,利用二项分布的期望公式求解即可.【详解】解:(1)由题意可知,,由公式,,∴与的关系可用线性回归模型拟合;(2)药品的每类剂型经过两次检测后合格的概率分别为,,,由题意,,.【点睛】本题考查相关系数的求解,考查二项分布的期望,是中档题.19.(1);(2).【解析】

(1)建立空间坐标系,通过求向量与向量的夹角,转化为异面直线与直线所成的角的大小;(2)先求出面的一个法向量,再用点到面的距离公式算出即可.【详解】以为原点,所在直线分别为轴建系,设所以,,所以异面直线与直线所成的角的余弦值为,异面直线与直线所成的角的大小为.(2)因为,,设是面的一个法向量,所以有即,令,,故,又,所以点到平面的距离为.【点睛】本题主要考查向量法求异面直线所成角的大小和点到面的距离,意在考查学生的数学建模以及数学运算能力.20.(1);(2)面积的最小值为;四边形的面积为【解析】

(1)将曲线消去参数即可得到的普通方程,将,代入曲线的极坐标方程即可;(2)由(1)得曲线的极坐标方程,设,,,利用方程可得,再利用基本不等式得,即可得,根据题意知,进而可得四边形的面积.【详解】(1)由曲线的参数方程为(为参数)消去参数得曲线的极坐标方程为,即,所以,曲线的直角坐标方程.(2)依题意得的极坐标方程为设,,,则,,故,当且仅当(即)时取“=”,故,即面积的最小值为.此时,故所求四边形的面积为.【点睛】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、点到直线的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.21.(1),(2)【解析】

先求出,再求圆的半径和极坐标方程;(2)设求出,,再求出得解.【详解】(1)将化成直角坐标方程,得则,故,则圆,即,所以圆M的半径为.将圆M的方程化成极坐标方程,得.即圆M的极坐标方程为.(2)设,则,用代替.可得,【点睛】本题主要考查直角坐标和极坐标的互化,考查极径的计算,意在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论