河南省鹤壁市淇滨区鹤壁高中2025年高三冲刺模考数学试题_第1页
河南省鹤壁市淇滨区鹤壁高中2025年高三冲刺模考数学试题_第2页
河南省鹤壁市淇滨区鹤壁高中2025年高三冲刺模考数学试题_第3页
河南省鹤壁市淇滨区鹤壁高中2025年高三冲刺模考数学试题_第4页
河南省鹤壁市淇滨区鹤壁高中2025年高三冲刺模考数学试题_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省鹤壁市淇滨区鹤壁高中2025年高三冲刺模考数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.阅读下侧程序框图,为使输出的数据为31,则①处应填的数字为A.4 B.5 C.6 D.72.命题:的否定为A. B.C. D.3.若双曲线的焦距为,则的一个焦点到一条渐近线的距离为()A. B. C. D.4.如图,四面体中,面和面都是等腰直角三角形,,,且二面角的大小为,若四面体的顶点都在球上,则球的表面积为()A. B. C. D.5.已知数列满足,且,则的值是()A. B. C.4 D.6.设是定义域为的偶函数,且在单调递增,,则()A. B.C. D.7.已知函数的部分图象如图所示,则()A. B. C. D.8.在正方体中,球同时与以为公共顶点的三个面相切,球同时与以为公共顶点的三个面相切,且两球相切于点.若以为焦点,为准线的抛物线经过,设球的半径分别为,则()A. B. C. D.9.已知等比数列的前项和为,且满足,则的值是()A. B. C. D.10.设复数z=,则|z|=()A. B. C. D.11.若,满足约束条件,则的最大值是()A. B. C.13 D.12.复数(为虚数单位),则等于()A.3 B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,,,则_________.14.函数在区间上的值域为______.15.在中,内角的对边长分别为,已知,且,则_________.16.直线过圆的圆心,则的最小值是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列是各项均为正数的等比数列,,且,,成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设,为数列的前项和,记,证明:.18.(12分)在中,角,,所对的边分别是,,,且.(1)求的值;(2)若,求的取值范围.19.(12分)某商场举行有奖促销活动,顾客购买每满元的商品即可抽奖一次.抽奖规则如下:抽奖者掷各面标有点数的正方体骰子次,若掷得点数大于,则可继续在抽奖箱中抽奖;否则获得三等奖,结束抽奖,已知抽奖箱中装有个红球与个白球,抽奖者从箱中任意摸出个球,若个球均为红球,则获得一等奖,若个球为个红球和个白球,则获得二等奖,否则,获得三等奖(抽奖箱中的所有小球,除颜色外均相同).若,求顾客参加一次抽奖活动获得三等奖的概率;若一等奖可获奖金元,二等奖可获奖金元,三等奖可获奖金元,记顾客一次抽奖所获得的奖金为,若商场希望的数学期望不超过元,求的最小值.20.(12分)在平面直角坐标系xOy中,椭圆C:x2a2(1)求椭圆C的方程;(2)假设直线l:y=kx+m与椭圆C交于A,B两点.①若A为椭圆的上顶点,M为线段AB中点,连接OM并延长交椭圆C于N,并且ON=62OM,求OB的长;②若原点O到直线l的距离为1,并且21.(12分)如图,在平面直角坐标系中,以轴正半轴为始边的锐角的终边与单位圆交于点,且点的纵坐标是.(1)求的值:(2)若以轴正半轴为始边的钝角的终边与单位圆交于点,且点的横坐标为,求的值.22.(10分)已知数列{an}满足条件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N*.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=,Sn为数列{bn}的前n项和,求证:Sn.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】考点:程序框图.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求S的值,我们用表格列出程序运行过程中各变量的值的变化情况,不难给出答案.解:程序在运行过程中各变量的值如下表示:Si是否继续循环循环前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后当i<5时退出,故选B.2、C【解析】

命题为全称命题,它的否定为特称命题,将全称量词改为存在量词,并将结论否定,可知命题的否定为,故选C.3、B【解析】

根据焦距即可求得参数,再根据点到直线的距离公式即可求得结果.【详解】因为双曲线的焦距为,故可得,解得,不妨取;又焦点,其中一条渐近线为,由点到直线的距离公式即可求的.故选:B.【点睛】本题考查由双曲线的焦距求方程,以及双曲线的几何性质,属综合基础题.4、B【解析】

分别取、的中点、,连接、、,利用二面角的定义转化二面角的平面角为,然后分别过点作平面的垂线与过点作平面的垂线交于点,在中计算出,再利用勾股定理计算出,即可得出球的半径,最后利用球体的表面积公式可得出答案.【详解】如下图所示,分别取、的中点、,连接、、,由于是以为直角等腰直角三角形,为的中点,,,且、分别为、的中点,所以,,所以,,所以二面角的平面角为,,则,且,所以,,,是以为直角的等腰直角三角形,所以,的外心为点,同理可知,的外心为点,分别过点作平面的垂线与过点作平面的垂线交于点,则点在平面内,如下图所示,由图形可知,,在中,,,所以,,所以,球的半径为,因此,球的表面积为.故选:B.【点睛】本题考查球体的表面积,考查二面角的定义,解决本题的关键在于找出球心的位置,同时考查了计算能力,属于中等题.5、B【解析】由,可得,所以数列是公比为的等比数列,所以,则,则,故选B.点睛:本题考查了等比数列的概念,等比数列的通项公式及等比数列的性质的应用,试题有一定的技巧,属于中档试题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,等比数列的性质和在使用等比数列的前n项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.6、C【解析】

根据偶函数的性质,比较即可.【详解】解:显然,所以是定义域为的偶函数,且在单调递增,所以故选:C【点睛】本题考查对数的运算及偶函数的性质,是基础题.7、A【解析】

先利用最高点纵坐标求出A,再根据求出周期,再将代入求出φ的值.最后将代入解析式即可.【详解】由图象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),将代入得φ)=1,∴φ,结合0<φ,∴φ.∴.∴sin.故选:A.【点睛】本题考查三角函数的据图求式问题以及三角函数的公式变换.据图求式问题要注意结合五点法作图求解.属于中档题.8、D【解析】

由题先画出立体图,再画出平面处的截面图,由抛物线第一定义可知,点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离因此球内切于正方体,设,两球球心和公切点都在体对角线上,通过几何关系可转化出,进而求解【详解】根据抛物线的定义,点到点的距离与到直线的距离相等,其中点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离,因此球内切于正方体,不妨设,两个球心和两球的切点均在体对角线上,两个球在平面处的截面如图所示,则,所以.又因为,因此,得,所以.故选:D【点睛】本题考查立体图与平面图的转化,抛物线几何性质的使用,内切球的性质,数形结合思想,转化思想,直观想象与数学运算的核心素养9、C【解析】

利用先求出,然后计算出结果.【详解】根据题意,当时,,,故当时,,数列是等比数列,则,故,解得,故选.【点睛】本题主要考查了等比数列前项和的表达形式,只要求出数列中的项即可得到结果,较为基础.10、D【解析】

先用复数的除法运算将复数化简,然后用模长公式求模长.【详解】解:z====﹣﹣,则|z|====.故选:D.【点睛】本题考查复数的基本概念和基本运算,属于基础题.11、C【解析】

由已知画出可行域,利用目标函数的几何意义求最大值.【详解】解:表示可行域内的点到坐标原点的距离的平方,画出不等式组表示的可行域,如图,由解得即点到坐标原点的距离最大,即.故选:.【点睛】本题考查线性规划问题,考查数形结合的数学思想以及运算求解能力,属于基础题.12、D【解析】

利用复数代数形式的乘除运算化简,从而求得,然后直接利用复数模的公式求解.【详解】,所以,,故选:D.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的乘除运算,复数的共轭复数,复数的模,属于基础题目.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先由题意得:,再利用向量数量积的几何意义得,可得结果.【详解】由知:,则在方向的投影为,由向量数量积的几何意义得:,∴故答案为【点睛】本题考查了投影的应用,考查了数量积的几何意义及向量的模的运算,属于基础题.14、【解析】

由二倍角公式降幂,再由两角和的正弦公式化函数为一个角的一个三角函数形式,结合正弦函数性质可求得值域.【详解】,,则,.故答案为:.【点睛】本题考查三角恒等变换(二倍角公式、两角和的正弦公式),考查正弦函数的的单调性和最值.求解三角函数的性质的性质一般都需要用三角恒等变换化函数为一个角的一个三角函数形式,然后结合正弦函数的性质得出结论.15、4【解析】∵∴根据正弦定理与余弦定理可得:,即∵∴∵∴故答案为416、【解析】

直线mx﹣ny﹣1=0(m>0,n>0)经过圆x2+y2﹣2x+2y﹣1=0的圆心(1,﹣1),可得m+n=1,再利用“乘1法”和基本不等式的性质即可得出.【详解】∵mx﹣ny﹣1=0(m>0,n>0)经过圆x2+y2﹣2x+2y﹣1=0的圆心(1,﹣1),∴m+n﹣1=0,即m+n=1.∴()(m+n)=22+2=4,当且仅当m=n时取等号.∴则的最小值是4.故答案为:4.【点睛】本题考查了圆的标准方程、“乘1法”和基本不等式的性质,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ),;(Ⅱ)见解析【解析】

(Ⅰ)由,且成等差数列,可求得q,从而可得本题答案;(Ⅱ)化简求得,然后求得,再用裂项相消法求,即可得到本题答案.【详解】(Ⅰ)因为数列是各项均为正数的等比数列,,可设公比为q,,又成等差数列,所以,即,解得或(舍去),则,;(Ⅱ)证明:,,,则,因为,所以即.【点睛】本题主要考查等差等比数列的综合应用,以及用裂项相消法求和并证明不等式,考查学生的运算求解能力和推理证明能力.18、(1);(2)【解析】

(1)利用正弦定理边化角,结合两角和差正弦公式可整理求得,进而求得和,代入求得结果;(2)利用正弦定理可将表示为,利用两角和差正弦公式、辅助角公式将其整理为,根据正弦型函数值域的求解方法,结合的范围可求得结果.【详解】(1)由正弦定理可得:即(2)由(1)知:,,即的取值范围为【点睛】本题考查解三角形知识的相关应用,涉及到正弦定理边化角的应用、两角和差正弦公式和辅助角公式的应用、与三角函数值域有关的取值范围的求解问题;求解取值范围的关键是能够利用正弦定理将边长的问题转化为三角函数的问题,进而利用正弦型函数值域的求解方法求得结果.19、;.【解析】

设顾客获得三等奖为事件,因为顾客掷得点数大于的概率为,顾客掷得点数小于,然后抽将得三等奖的概率为,求出;由题意可知,随机变量的可能取值为,,,相应求出概率,求出期望,化简得,由题意可知,,即,求出的最小值.【详解】设顾客获得三等奖为事件,因为顾客掷得点数大于的概率为,顾客掷得点数小于,然后抽将得三等奖的概率为,所以;由题意可知,随机变量的可能取值为,,,且,,,所以随机变量的数学期望,,化简得,由题意可知,,即,化简得,因为,解得,即的最小值为.【点睛】本题主要考查概率和期望的求法,属于常考题.20、(1)x22+y2【解析】

(1)根据椭圆的几何性质可得到a2,b2;(2)联立直线和椭圆,利用弦长公式可求得弦长AB,利用点到直线的距离公式求得原点到直线l的距离,从而可求得三角形面积,再用单调性求最值可得值域.【详解】(1)因为两焦点与短轴的一个顶点的连线构成等腰直角三角形,所以a=2又由右准线方程为x=2,得到a2解得a=2,c=1,所以所以,椭圆C的方程为x2(2)①设B(x1,y1∵ON=6因为点B,N都在椭圆上,所以x122+y12所以OB=x②由原点O到直线l的距离为1,得|m|1+k2联立直线l的方程与椭圆C的方程:y=kx+mx2设A(x1,y1OA=(1+k2)所以k△OAB的面积S==1因为S=2λ(1-λ)在[并且当λ=45时,S=225所以△OAB的面积S的范围为[10【点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论