




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广东省韶关市高三第二学期第二次三模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用列联表,由计算得,参照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正确结论是()A.有99%以上的把握认为“学生性别与中学生追星无关”B.有99%以上的把握认为“学生性别与中学生追星有关”C.在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”D.在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关”2.已知函数,若曲线在点处的切线方程为,则实数的取值为()A.-2 B.-1 C.1 D.23.二项式的展开式中只有第六项的二项式系数最大,则展开式中的常数项是()A.180 B.90 C.45 D.3604.已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为()A. B. C. D.5.已知圆与抛物线的准线相切,则的值为()A.1 B.2 C. D.46.由曲线围成的封闭图形的面积为()A. B. C. D.7.复数(i为虚数单位)的共轭复数是A.1+i B.1−i C.−1+i D.−1−i8.函数的一个单调递增区间是()A. B. C. D.9.若表示不超过的最大整数(如,,),已知,,,则()A.2 B.5 C.7 D.810.已知排球发球考试规则:每位考生最多可发球三次,若发球成功,则停止发球,否则一直发到次结束为止.某考生一次发球成功的概率为,发球次数为,若的数学期望,则的取值范围为()A. B. C. D.11.在中,内角A,B,C所对的边分别为a,b,c,D是AB的中点,若,且,则面积的最大值是()A. B. C. D.12.中,点在边上,平分,若,,,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.下图是一个算法流程图,则输出的的值为__________.14.若向量与向量垂直,则______.15.已知函数,若函数有个不同的零点,则的取值范围是___________.16.展开式中项的系数是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(Ⅰ)求函数的极值;(Ⅱ)若,且,求证:.18.(12分)已知正项数列的前项和.(1)若数列为等比数列,求数列的公比的值;(2)设正项数列的前项和为,若,且.①求数列的通项公式;②求证:.19.(12分)已知函数.(1)设,若存在两个极值点,,且,求证:;(2)设,在不单调,且恒成立,求的取值范围.(为自然对数的底数).20.(12分)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知:,:,:.(1)求与的极坐标方程(2)若与交于点A,与交于点B,,求的最大值.21.(12分)近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸.呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院人进行了问卷调查得到了如下的列联表:患心肺疾病不患心肺疾病合计男女合计已知在全部人中随机抽取人,抽到患心肺疾病的人的概率为.(1)请将上面的列联表补充完整,并判断是否有的把握认为患心肺疾病与性别有关?请说明你的理由;(2)已知在不患心肺疾病的位男性中,有位从事的是户外作业的工作.为了指导市民尽可能地减少因雾霾天气对身体的伤害,现从不患心肺疾病的位男性中,选出人进行问卷调查,求所选的人中至少有一位从事的是户外作业的概率.下面的临界值表供参考:(参考公式,其中)22.(10分)在如图所示的四棱锥中,四边形是等腰梯形,,,平面,,.(1)求证:平面;(2)已知二面角的余弦值为,求直线与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
通过与表中的数据6.635的比较,可以得出正确的选项.【详解】解:,可得有99%以上的把握认为“学生性别与中学生追星有关”,故选B.【点睛】本题考查了独立性检验的应用问题,属于基础题.2、B【解析】
求出函数的导数,利用切线方程通过f′(0),求解即可;【详解】f(x)的定义域为(﹣1,+∞),因为f′(x)a,曲线y=f(x)在点(0,f(0))处的切线方程为y=2x,可得1﹣a=2,解得a=﹣1,故选:B.【点睛】本题考查函数的导数的几何意义,切线方程的求法,考查计算能力.3、A【解析】试题分析:因为的展开式中只有第六项的二项式系数最大,所以,,令,则,.考点:1.二项式定理;2.组合数的计算.4、D【解析】
设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,设,得,求出的值,即得解.【详解】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,所以,.设,则,又.故,所以.故选:D【点睛】本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.5、B【解析】
因为圆与抛物线的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于半径,可知的值为2,选B.【详解】请在此输入详解!6、A【解析】
先计算出两个图像的交点分别为,再利用定积分算两个图形围成的面积.【详解】封闭图形的面积为.选A.【点睛】本题考察定积分的应用,属于基础题.解题时注意积分区间和被积函数的选取.7、B【解析】分析:化简已知复数z,由共轭复数的定义可得.详解:化简可得z=∴z的共轭复数为1﹣i.故选B.点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题.8、D【解析】
利用同角三角函数的基本关系式、二倍角公式和辅助角公式化简表达式,再根据三角函数单调区间的求法,求得的单调区间,由此确定正确选项.【详解】因为,由单调递增,则(),解得(),当时,D选项正确.C选项是递减区间,A,B选项中有部分增区间部分减区间.故选:D【点睛】本小题考查三角函数的恒等变换,三角函数的图象与性质等基础知识;考查运算求解能力,推理论证能力,数形结合思想,应用意识.9、B【解析】
求出,,,,,,判断出是一个以周期为6的周期数列,求出即可.【详解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一个以周期为6的周期数列,则.故选:B.【点睛】本题考查周期数列的判断和取整函数的应用.10、A【解析】
根据题意,分别求出再根据离散型随机变量期望公式进行求解即可【详解】由题可知,,,则解得,由可得,答案选A【点睛】本题考查离散型随机变量期望的求解,易错点为第三次发球分为两种情况:三次都不成功、第三次成功11、A【解析】
根据正弦定理可得,求出,根据平方关系求出.由两端平方,求的最大值,根据三角形面积公式,求出面积的最大值.【详解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中点,且,,即,即,,当且仅当时,等号成立.的面积,所以面积的最大值为.故选:.【点睛】本题考查正、余弦定理、不等式、三角形面积公式和向量的数量积运算,属于中档题.12、B【解析】
由平分,根据三角形内角平分线定理可得,再根据平面向量的加减法运算即得答案.【详解】平分,根据三角形内角平分线定理可得,又,,,,..故选:.【点睛】本题主要考查平面向量的线性运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】
分析程序中各变量、各语句的作用,根据流程图所示的顺序,即可得出结论.【详解】解:初始,第一次循环:;第二次循环:;第三次循环:;经判断,此时跳出循环,输出.故答案为:【点睛】本题考查了程序框图的应用问题,解题的关键是对算法语句的理解,属基础题.14、0【解析】
直接根据向量垂直计算得到答案.【详解】向量与向量垂直,则,故.故答案为:.【点睛】本题考查了根据向量垂直求参数,意在考查学生的计算能力.15、【解析】
作出函数的图象及直线,如下图所示,因为函数有个不同的零点,所以由图象可知,,,所以.16、-20【解析】
根据二项式定理的通项公式,再分情况考虑即可求解.【详解】解:展开式中项的系数:二项式由通项公式当时,项的系数是,当时,项的系数是,故的系数为;故答案为:【点睛】本题主要考查二项式定理的应用,注意分情况考虑,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)极大值为:,无极小值;(Ⅱ)见解析.【解析】
(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可求出函数的极值;(Ⅱ)得到,根据函数的单调性问题转化为证明,即证,令,根据函数的单调性证明即可.【详解】(Ⅰ)的定义域为且令,得;令,得在上单调递增,在上单调递减函数的极大值为,无极小值(Ⅱ),,即由(Ⅰ)知在上单调递增,在上单调递减且,则要证,即证,即证,即证即证由于,即,即证令则恒成立在递增在恒成立【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,考查不等式的证明,考查运算求解能力及化归与转化思想,关键是能够构造出合适的函数,将问题转化为函数最值的求解问题,属于难题.18、(1);(2)①;②详见解析.【解析】
(1)依题意可表示,,相减得,由等比数列通项公式转化为首项与公比,解得答案,并由其都是正项数列舍根;(2)①由题意可表示,,两式相减得,由其都是正项并整理可得递推关系,由等差数列的通项公式即可得答案;②由已知关系,表示并相减即可表示递推关系,显然当时,成立,当,时,表示,由分组求和与正项数列性质放缩不等式得证.【详解】解:(1)依题意可得,,两式相减,得,所以,因为,所以,且,解得.(2)①因为,所以,两式相减,得,即.因为,所以,即.而当时,,可得,故,所以对任意的正整数都成立,所以数列是等差数列,公差为1,首项为1,所以数列的通项公式为.②因为,所以,两式相减,得,即,所以对任意的正整数,都有.令,而当时,显然成立,所以当,时,,所以,即,所以,得证.【点睛】本题考查由前n项和关系求等比数列公比,求等差数列通项公式,还考查了由分组求和表示数列和并由正项数列放缩证明不等式,属于难题.19、(1)证明见解析;(2).【解析】
(1)先求出,又由可判断出在上单调递减,故,令,记,利用导数求出的最小值即可;(2)由在上不单调转化为在上有解,可得,令,分类讨论求的最大值,再求解即可.【详解】(1)已知,,由可得,又由,知在上单调递减,令,记,则在上单调递增;,在上单调递增;,(2),,在上不单调,在上有正有负,在上有解,,,恒成立,记,则,记,,在上单调增,在上单调减.于是知(i)当即时,恒成立,在上单调增,,,.(ii)当时,,故不满足题意.综上所述,【点睛】本题主要考查了导数的综合应用,考查了分类讨论,转化与化归的思想,考查了学生的运算求解能力.20、(1)的极坐标方程为;的极坐标方程为:(2)【解析】
(1)根据,代入即可转化.(2)由:,可得,代入与的极坐标方程求出,从而可得,再利用二倍角公式、辅助角公式,借助三角函数的性质即可求解.【详解】(1):,,的极坐标方程为:,,的极坐标方程为:,(2):,则(为锐角),,,,当时取等号.【点睛】本题考查了极坐标与直角坐标的互化、二倍角公式、辅助角公式以及三角函数的性质,属于基础题.21、(1)列联表见解析,有的把握认为患心肺疾病与性别有关,理由见解析;(2).【解析】
(1)结合题意完善列联表,计算出的观测值,对照临界值表可得出结论;(2)记不患心肺疾病的五位男性中从事户外作业的两人分别为、,其余三人分别为、、,利用列举法列举出所有的基本事件,并确定事件“所选的人中至少有一位从事的是户外作业”所包含的基本事件数,利用古典概型的概率公式可取得所求事件的概率.【详解】(1)由于在全部人中随机抽取人,抽到患心肺疾病的人的概率为,所以人中患心肺疾病的人数为人,故可将列联表补充如下:患心肺疾病不患心肺疾病合计男女合计.故有的把握认为患心肺疾病与性别有关;(2)记不患心肺疾病的五位男性中从事户外作业的两人分别为、,其余三人分别为、、.从中选取三人共有以下种情形:、、、、、、、、、.其中至少有一位从事的是户外作业的有种情形,分别为:、、、、、、、、,所以所选的人中至少有一位从事的是户外作业的概率为.【点睛】本题考查利用独立性检验的基本思想解决实际问题,同时也考查了利用列举法求解古典概型的概率问题,考查计算能力,属于中等题.22、(1)证明见解析;(2).【解析】
(1)由已知可得,结合,由直线与平面垂直的判定可得平面;(2)由(1)知,,则,,两两互相垂直,以为坐标原点,分别以,,所在直线为,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七年级生物下册 第四单元 第四章 第三节 输送血液的泵-心脏教学设计3 (新版)新人教版
- 地板基材行业直播电商战略研究报告
- 2025-2030鲜花产业市场深度分析及前景趋势与投资研究报告
- 2025-2030高等教育项目可行性研究咨询报告
- 2025-2030陶瓷纸行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2025-2030镀锡板行业行业风险投资发展分析及投资融资策略研究报告
- 2025-2030钢化玻璃行业市场深度分析及竞争格局与投资价值研究报告
- 2025-2030连锁书店产业政府战略管理与区域发展战略研究咨询报告
- 小学二年级科学演示实验计划
- 五年级信息技术上册 第5课 修饰课程表教学设计 闽教版
- GB/T 44927-2024知识管理体系要求
- 2025年国家林业和草原局直属事业单位招聘应届毕业生231人历年高频重点提升(共500题)附带答案详解
- 跨栏跑技术教学课件
- 2025年江苏无锡市第九人民医院招考聘用高频重点提升(共500题)附带答案详解
- 湖北省武汉市2024-2025学年度高三元月调考英语试题(含答案无听力音频有听力原文)
- 大象版小学科学四年级下册全册教案(教学设计)及反思
- 产业链韧性理论研究新进展与提升路径
- 2025年重庆出版集团招聘笔试参考题库含答案解析
- 职业技术学院《直播电商运营主持》课程标准
- 医院肾脏病健康宣教
- 2024年度部队食堂蔬菜粮油供应合同规范范本3篇
评论
0/150
提交评论