




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【2年中考1年模拟】20XX年中考数学专题05
次根式试题(含解析)
专题05二次根式
百解读考点
•・•■.MB
A-Lr・
1Z・4X.f•・京
wte.
inaifAMMfttB*.HXAeX
0・:”•,%,》•♦,,■,■・*立■0.■•・m,,•
⑺•“A・
・・・・
・£•・»。・人.W”■■”■■小*~3例,
*i・
R9AKMW盘收4,
H
HHIIliq*・4t,fWU".•
3・3n,l>OCUX.«llHtA・X.”•■,ItaXSWWH^XM4TtK.
”,0•♦•••,、
•I1而r*“e
足■
⑶井中・f匕丝
■
e4琮a**
・・・
Ut•立*!«8・・・t/«Ag424t£2;*
ill_N-NIMk・tX■NOfHh
,IJk.tL«MMiatUaultM
♦♦i5、s•f
4
75
V15
[2015
75
年题组】
1.(2015
百
【解析】
试题分析:73x^=715.故选B.
)
A..
【答案】B.
考点:二次根式的乘除法.
2.(2015徐州)使x1有意义的x的取值范围是()
A.xWlB.x21C.x>1D.x>0
【答案】B.
【解析】
试题分析:・・・x1有意义,・・・x-120,即x21.故选B.考点:二
次根式有意义的条件.
3.(2015扬州)下列二次根式中的最简二次根式是()
展
A
B.C
.D
.1
2
【答窠】A.
【解析】
试题分析:A.符合最简二次根式的定义,故本选项正确;
B
正
,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错
误;
CD故选A.
考点:最简二次根式.
2
*£!»>«•A><(
4.(2015
)
A
【答案】C.
【解析】
试H分析:A.本选埃不合麴超J
.4达啖不含电意,
书3
卜当,t■送项合力君J
D.712=27?.本选项不合题嫌।
馥选C.
考点:同类二次根式.
5.(2015宜昌)下列式子没有意义的是〔)
A
Q
而
叵
【答案】A.
【解析】
试题分析:A
尸
A符合题意:
B
而
B不符合题意;
C
V2
C不符合题意;
D
7HF
D不符合题意;
故选A.
考点:二次根式有意义的条件.
6.(2015潜江)下列各式计算正确的是()
A
72
.1C.2336333D
V27
【答案】D.
A.又,与工
r.>u,食
考点:1.二次根式的乘除法;2.二次根式的加减法.
7.(2015
,2x+6
X的取值范围在数轴上表示出来,正确的是()
A.B.
C.
【答案】C.
【解析】D.
试题分析:由题意得,2x+620,解得,x»-3,故选C.
考点:1.在数轴上表示不等式的解集;2.二次根式有意义的条件.
inn)8.(2015钦州)对于任意的正数in、n定义运算※为:田※n
y/m
5
=,计算(3X2)X(8※⑵
mn)
的结果为()
A
.2.2C
..20
【答案】B.
【解析】
试题分析::3>2,二?※
有
2=,V8<12,..用※
卮
6
,:.(3X2)X化※
12)二
6
x/2
叵
=2.故选B.
考点:1.二次根式的混合运算;2.新定义.
9.(2015
孝感)已知X2
(7x2(2x)
A.0B
/
.2
百
.2
【答案】C.
4
【解析】
试题分析:
耳
把x2代入代数
6
73
石
:(72)(3(72
)
433
4934812
Js-2)2
.故选C.
考点:二次根式的化简求值.
10.(2015荆门)当1a2a0的值是()
A
.IB.IC.2a3D
.32a
【答案】B.
考点:二次根式的性质与化简.
11.(2015随州)若代数式1x的取值范围是()x1
A.x1B.x0C.x
0D.x0且x1
【答案】D.
【解析】
试题分析::代数式x101,解得x0且x
1.故选D.x1x0
考点:1.二次根式有意义的条件;2.分式有意义的条件.
12.
更+1
(2015淄博)已知x22y,则xxyy的值为()A.2B.4c.5
D.
-1
7
【答案】B.
【解析】
/+1
试题分析:原式二(xy)
\/5—1
小+T
xy二考点:二次根式的化简求值.
13.(20152
4
2=
21二51
I
=4.故选B.
Vis
)5
A.5和6B.6和7c.7和8D.8和9
【答案】B.
【解析】
试题分析:原式
的运算结果在6和7两个连续自然数之间,故选B.
考点:1.估算无理数的大小;2.二次根式的乘除法.
14.(2015
V5
店
的结果是.
【答案】5.
【解析】
M分析:些W=故答案为;5.
考点:二次根式的乘除法.
15.(2015泰州)计算:21
2等于
72
【答案】
【解析】
试题分析:原式
V2
=2
>/2
V2
V2
V2
2-
考点:二次根式的加减法.
16.(2015
((X-3)-
3x,则x的取值范围是.
【答案】xW3.
【解析】
3)〜
3x,,3-x20,解得:xW3,故答案为:xW3.
考点:二次根式的性质与化简.
17.(2015
yJx-3
攀枝花)若y2,则xy.
【答案】9.
6
【解析】
试题分析:yy22有意义,必须x30,3x0,解得:x=3,代入
得:y=0+0+2=2,・・.x=3=9.故答案为:9.
考点:二次根式有意义的条件.
18.(2015毕节)实数a,b
【答案】b.
考点:1.实数与数轴;2.二次根式的性质与化简.
19.(2015
葫芦岛)若代数式
【答案】x20且xWl.
【解析】
试题分析::有意义,则实数X的取值范围是.X1有意义,
・・・x20,x-1/0,・,•实数x的取值范围是:x20且x#L故答案为:x20
且x1
xWl.
考点:1.二次根式有意义的条件;2.分式有意义的条件.
120.(2015陕西省)计算:622
a
2
【答案】8
【解析】
试题分析:根据二次根式的乘法法则、绝对值的意义、负整数整数早的
意义化简后合并即可.试题解析:原式
,3x6
日
V2
8二
72
8=8
考点:1.二次根式的混合运算;2.负整数指数幕.
73
121.(2015
724
大连)计算:1)(0
2).
【答案】1
(防1
以■的侪,卬。万.£六.二EJtm.DWd,怎€*
tow♦xojji-ri♦入C
考点:L二次根式的混合运算;2.零指数幕.
22.(2015山西省)阅读与计算:请阅读以下材料,并完成相应的任
务.
t4<!!1^1IX
・•♦・*•••,IMR-C44MK|M
♦**.AKA.<!KMTHIt8
<<«?<AfIXAf.<♦«#1
任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第
2个数.
【答案】1,1.
【解析】
试题分析:分别把1、2代入式子化简即可.
试题解析:第1个数,当n=l时,原式
112
2.
第2个数,当n=2时,原式
忑
1+后
1—\/5
22
6+2君
6-2x/5
考点:1.二次根式的应用;2.阅读型;3.规律型;4.综合题.
[20XX年题组】
1.(20XX年四川甘孜中考)使代数式有意义的x的取值范围是()
A.x20B.-5<xV5C.x25D.x2-5
【答案】D.
【解析】
试题分析:由题意得,x+520,解得xN-5.故选D.
考点:二次根式有意义的条件.
8
2.(20XX年潍坊中考)若代数
VxTT
义,则实数x的取值范围是()A.x》一lB.x2—1且xW3
C.x>-lD.x>-l且xW3
【答案】D.
析】
Xi-1
SOW所:虫三卬南{,…m叫,,款LM7且#3.妙电:).
考点:1.二次根式有意义的条件;2.分式有意义的条件.
3.(20XX年镇江中考)若x、y
J2x-1
2y10,则xy的值等于()2
35A.1B.C.2D.22
【答案】B.
【解析】
x/2Tj
1132x10x2y10,
Axy1.22222y10y12
故选B.
考点:1.二次根式被开方数和偶次幕的非负性质;2.求代数式的值.
4.(20XX年甘肃白银中考)下列计算错误的是()
A.
V2
•=B.+=C.4-=2D.
=2
【答案】B.
【解析】
试题分析:A
计算正确;B
叵
不能合并,原题计算错误;C
73
74
2,计算正确;D
72
故选B.
考点:二次根式的混合运算.
5.(20XX年山东省聊城市中考)下列计算正确的是()
A.2X3=6B.+=C.5-2=3D.X
【答案】D.
9
【解析】
试题分析:A
、23318,故A错误;B、不是同类二次根式,不能相加,故B
错误;C、不是同类二次根式,不能相减,故C错误;D
A
耳
,故D正确;故选D.
考点:二次根式的加减法、乘除法.
6.(2014
)
A.
瓜
V24
V125
D
厄
【答案】D.
rfj?--AM.邛:。沙尸.,〃得0,
跖存二:4,税xt,6的Kt二,T式硬&好0学,
C.反.氐Jtf当石矍其收二次府R.收此也什暹泼,
。、J\2-万•检.是日员二.岬比.
<■dD.
考点:同类二次根式.
7.(2014
6
73
年凉山中考)已知山中x2xl+x2=.
【答案】10.
【解析】
6
试题分析:・・・xlx222
2xl+x2=(xl+x2)
2x1x2
22
12210.
考点:二次根式的混合运算.
8.(2OXX年哈尔滨中考)计算:=.【答案】3.
【解析】试题分析:=2-=3.
10
考点:二次根式的加减法.
9.(2014
V2
我
【答案】2.
【解析】
迫的析:脏.上次-VLA=4-2--
考点:二次根式的乘除法.
10.(2014
【答案】
【解析】
试题分析:分别进行二次根式的乘法运算,二次根式的化简,负整数指
数零的运算,然后合并即可求出答案.
试题解析:原式
考点:1.一次根式的混合运算:2.负整数指数塞.
才考点归纳
归纳1:二次根式的意义及性质
基础知识归纳:
二次根式有意义的条件是被开方数大于或等于0.
注意问题归纳:
1.首先考虑被开方数为非负数,其次还耍考虑其他限制条件,这样就转
化为解不等式或不等式组问题,如有分母时还要注意分式的分母不为0.
2、利用二次根式性质时,如果题目中对根号内的字母给出了取值范
围,那么应在这个范围内对根式进行化简,如果题目中没有给出明确的取值
范围,那么应注意对题目条件的挖掘,把隐含在题目条件中所限定的取值范
围显现出来,在允许的取值范围内进行化简.
【例1
G
1函数y1-1).30x2中,自变量x的取值范围是.【答
案】x20且xW2且xW3.
11
考点:二次根式有意义的条件.
归纳2:最简二次根式与同类二次根式
基础知识归纳:
1.最简二次根式
被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式
的二次根式,叫做最简二次根式.
2.同类二次根式
化成最简二次根式后,被开方数相同的儿个二次根式,叫做同类二次根
式.
注意问题归纳;
最简二次根式的判断方法:
1.最简二次根式必须同时满足如下条件:
(1)被开方数的因数是整数,因式是整式(分母中不应含有根号);
(2)被开方数中不含开方开得尽的因数或因式,即被开方数的因数或
因式的指数都为1.
2.判断同类二次根式:先把所有的二次根式化成最简二次根式;再根
据被开方数是否相同来加以判断.要注意同类二次根式与根号外的因式无
关.
【例2】下列二次根式中,能与合并的是()
A.;B.
【答案】B.
UHM,.痴",]邛,,工,c.一乐
Ju-兵**MSB
1;C.-8;D.243
考点:同类二次根式.
归纳3:二次根式的运算
基础知识归纳:
(1).二次根式的加减法:实质就是合并同类二次根式.
j-no
?if-eBIKt.£*1-3-0...BFL.
12
合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最
简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根
式.
(2).二次根式的乘除法二次根式的乘法:.abab(a^O,
二次根式的除法:aabb(a&O,b>0).
注意问题归纳:正确把握运算法则是解题的关键
【例3】如果ab>0,a+bVO
的是()
A.①②B.②③
【答案】B.
【解析】Vab>0,a+b<0,Aa<0,b<0
存
C.①③D.①②③
y/ah
1b其中正确
Oa,b不能做被开方数,(故①错误)
,③1(故②正确)
yfab
b(故③正确)故选B.
考点:二次根式的运算.
归纳4:二次根式混合运算
基础知识归纳:先乘方,再乘除,最后加减,有括号的先算括号里的
(或先去括号).
注意问题归纳:注意运算顺序.
【例4
A/24
£
4(10
V2
【解析】原式由[TX'X】J2.
考点:二次根式的运算.
13
归纳5:二次根式运算中的技巧
基础知识归纳:1.二次根式的被开方数是非负数;2.非负数的性质.
注意问题归纳:
【例5】若y
,4-x
=y-2,则(x+y)=2
【答案】1.4
y-2【解析】由题意得,x-420且4-x20,解得x24且xW4,
Ax=4,y=-2,,x+y)=(4-2)=
考点:二次根式的运算.
百1年模拟
1.(2015
7^7
J2工-1
1.4有意义,则x应满足()A.UllWxW3B.xW3且x/
C.<x<3D.VxW32222
【答案】D.
noO
考点:1.二次根式有意义的条件;2.分式有意义的条件.
2.(20XX届四川省成都市外国语学校中考直升模拟)已知OVaVb,x
Ja+力
Jb
y
S
>jh-a
x,y的大小关系是()
A.x>yB.x=yC.x<yD.与a、b的取值有关
【答案】C.
【解析】
试题分析:x-y
yjb—Cl
yja+b
(b_a
=,V0<a<b,
\[a+h
yjh2-a2
・・・22b4b
Ja+b
Jb-a
<0,Ax-y<o.故选C.
考点:二次根式的化简.
3.(2015
7(-V-2?
2-x,那么x取值范)围是()
A.xW2B.x<2C.x22D.x>2
【答案】A.
【解析】
R-丁
=2-x,...x-2W0,解得:xW2.故选A.
考点:二次根式的性质与化简.
4.(20XX届山东省聊城市中考模拟)下列运算正确的是()
A.2a2+3a2=6a2B
72
c
石
V3
.1b
a11b
1a
【答案】D.
【解析】
试题分析:A.2a2+3a2=5a2,故本选项错误;
B
>/2
6
D.1b
a11b
1a,正确.故选D.
考点:1.二次根式的加减法;2.合并同类项;3.分式的基本性质;
4.二次根式的乘除法.
5.(2015
yj(x-2)'
2-x,那么x取值范)围是(
A.xW2B.x<2C.x22D.x>2
【答案】A.
【解析】
=2-x,.'.x-2^0,解得:xW2.故选A.
考点:二次根式的性质与化简.
6.(2015
届北京市门头沟区中考二模)在函数y中,自变量X的取值范围
是.
【答案】xeL
KH«rl
谎国分析:,町I超■胃:第湾2T.战苍鼻力:丫表1.
考点;1.函数自变量的取值范围;2.二次根式有意义的条件.
7.(2015
J(x-3尸
X,则X的取值范围是.
【答案】XW3.
【解析】
J(X-3)2
x,・・・3-x'0,解得:xW3.故答案为:x43.
考点:二次根式的性质与化简.
8.(2015
【答案】x>T巨xWl.
【解析】Ox+1)都有意义,则x的取值范围为.x10试题分
析:根据题意得:x10
x10
解得:x>T且xWl.故答案为:x>T且x#l.
考点:1.二次根式有意义的条件;2.分式有意义的条件;3.零指数
秣
9.(20XX届河北省沙河市二十冶第三中学九年级上学期第二次模拟数
学)若IbT|
y/a-4
,且一元
2二次方程kxaxb0有实数根,则k的取值范围是.
【答案】kW4且kWO.
4-4
考点:1.根的判别式;2.绝对值;3.二次根式的性质.
10.(20XX届云南省剑川县九年级上学期第三次统一模拟考试数学试
卷)已知x、y是实数,并且3x1y26y90,则(xy)2014的值是
【答案】1.
【解析】
试题分析:先将式子变形,然后根据二次根式和偶次事的性质求出x和
y的值,再代入到所求式子中即可因为3x1y26y90,即
x1(y3)20,所以3x10且y30,解得
llx,y3,所以(xy)2014(3)2014(1)2014133
考点:1.二次根式的性质;2.偶次幕的性质;3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030全球及中国电信网络管理软件行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030全球及中国物联网管理软件行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025年大学统计学期末考试题库:数据分析计算题高分技巧分享
- 豪萨语动词形态的历史语言学探讨论文
- 2025-2030全球及中国大麻纤维行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030全球及中国厨房显示系统(KDS)行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030全球及中国会员管理软件行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030全球及中国云DLP行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030全球及中国LTE高级专业版行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030健身房产业规划专项研究报告
- 2023年北京市农林科学院事业单位招聘(共500题含答案解析)笔试历年难、易错考点试题含答案附详解
- 尿崩症诊疗规范内科学诊疗规范诊疗指南2023版
- 3D打印实训指导书
- 除草机器人简介
- 当代文学第一章1949-1966年的文学思潮
- 抽油井检泵作业课件
- a320飞机空调系统工作原理与使用维护分析
- 施工机具进场检查验收记录
- 《液压与气动技术项目教程》高职配套教学课件
- 2022年七步洗手法操作考核评分标准
- 过敏性紫癜的护理PPT课件(PPT 33页)
评论
0/150
提交评论