




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题21从不同的方向看(录入:王云峰)
阅读与思考
20世纪初,伟大的法国建筑家列·柯尔伯齐曾说:“我想,到目前为止,我们从没有生活在这样的
几何时期,周围的一切都是几何学.”
生活中蕴含着丰富的几何图形,圆的月亮,平的湖面,直的树干,造型奇特的建筑,不断移动、反
转、放大缩小的电视画面……图形有的是立体的,有的是平面的,立体图形与平面图形之间的联系,从
以下方面得以体现:
1.立体图形的展开与折叠;
2.从各个角度观察立体图形;
3.用平面去截立体图形.
观察归纳、操作实验、展开想象、推理论证是探索图形世界的基本方法.
例题与求解
【例1】如图是一个正方体表面展开图,如果正方体相对的面上标注的值相等,那么xy=___
_.
8
2xy8
810
(四川省中考试题)
解题思路:展开与折叠是两个步骤相反的过程,从折叠还原成正方体入手.
【例2】如图,是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的
小立方块的个数是()
主视图左视图俯视图
A.5个B.6个C.7个D.8个
(四川省成都中考试题)
解题思路:根据三视图和几何体的关系,分别确定该几何体的列数和每一列的层数.
【例3】由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图.
(1)请你画出这个几何体的一种左视图;
(2)若组成这个几何体的小正方体的块数为n,求n的值.
主视图俯视图
(贵州省贵阳市课改实验区中考试题)
解题思路:本例可以在“脑子”中想象完成,也可以用实物摆一摆.从操作实验入手,从俯视图可
推断左视图只能有两列,由主视图分析出俯视图每一列小正方形的块数情况是解本例的关键,而有序思
考、分类讨论,则可避免重复与遗漏.
【例4】如图是由若干个正方体形状木块堆成的,平放于桌面上.其中,上面正方体的下底面四个顶
点恰是下面相邻正方体的上底面各边的中点,如果最下面的正方体的棱长为1,且这些正方体露在外面
的面积和超过8,那么正方体的个数至少是多少?按此规律堆下去,这些正方体露在外面的面积和的最
大值是多少?
(江苏省常州市中考试题)
解题思路:所有正方体侧面面积和再加上所有正方体上面露出的面积和,就是所求的面积.从简单
入手,归纳规律.
【例5】把一个正方体分割成49个小正方体(小正方体大小可以不等),请画图表示.
(江城国际数学竞赛试题)
解题思路:本例是一道图形分割问题,解答本例需要较强的空间想象能力和推理论证能力,需要把
图形性质与计算恰当结合.
【例6】建立模型18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)
之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题.
(1)根据上面的多面体模型,完成表格中的空格:
多面体顶点数(V)面数(F)棱数(E)
四面体44
长方体8612
正八面体812
正十二面体201230
你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是____.
(2)—个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是___.
(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且
有24个顶点,每个顶点处都有3条棱.设该多面体外表面三角形的个数为x个,八边形的个数为y个,
求xy的值.
解题思路:对于(1),通过观察、归纳发现V,F,E之间的关系,并迁移应用于解决(2),(3).
模型应用
如图,有一种足球是由数块黑白相间的牛皮缝制而成,黑皮为正五边形,白皮为正六边形,且边长
都相等,求正五边形、正六边形个数.
(浙江省宁波市中考试题改编)
能力训练
A级
1.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是___.
(山东省菏泽市中考试题)
134
242
35
6主视图左视图俯视图
第1题第2题左视图左视图
第3题图
2.由几个相同的小正方体搭成的几何体的视图如图所示,则搭成这个几何体的小正方体的个数是
____.
(湖北省武汉市中考试题)
3.—个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为____.
(山东省烟台市中考试题)
4.如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂
上颜色(底面不涂色),则第n个几何体中只有两个面涂色的小立方体共有__
图①图②图③
(山东省青岛市中考试题)
5.一个画家有14个边长为1m的正方体,他在地面上把它们摆成如图的形式,然后他把露出的表
面都涂上颜色,那么被涂颜色的总面积为()
A.19m2B.41m2C.33m2D.34m2
(山东省烟台市中考试题)
6.一个几何体由一些大小相同的小正方体组成,如图是它的主视图和俯视图,那么组成该几何体
所需小正方体的个数最少为()
A.3B.4C.5D.6
主视图俯视图
(河北省中考试题)
7.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,
则这个零件的表面积是()
A.20B.22C.24D.26
(河北省中考试题)
8.我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两
个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以
形成“牟合方盖”的一种模型,它的主视图是()
牟合方盖主视方向
ABCD
甲乙
(2012年温州市中考试题)
9.5个棱长为1的正方体组成如图的几何体.
(1)该几何体的体积是____(立方单位),表面积是____(平方单位);
(2)画出该几何体的主视图和左视图.
正面
(广州市中考试题)
10.用同样大小的正方体木块搭建的几何体,从正面看到的平面图形如图①所示,从上面看到的平
面图形如图②所示.
(1)如果搭建的几何体由9个小正方体木块构成,试画出从左面看这个几何体所得到的所有可能的
平面图形.
(2)这样的几何体最多可由几块小正方体构成?并在所用木块最多的情况下,画出从左面看到的所
有可能的平面图形.
图①图②
(“创新杯”邀请赛试题)
B级
1.如图,是一个正方体表面展开图,请在图中空格内填上适当的数,使这个正方体相对两个面上
标注的数值相等.
a
a2
1
a
(《时代学习报》数学文化节试题)
2.如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的
小正方体的块数为n,则n的所有可能的取值之和为____.
主视图俯视图
(江苏省江阴市中考试题)
3.如图是一个立方体的主视图、左视图和俯视图,图中单位为厘米,则立体图形的体积为___
_立方厘米.
2
1
22
主视图左视图左视图
(“华罗庚金杯赛”试题)
4.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是
下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方
体的个数至少是()
A.2B.3C.4D.5
(江苏省常州市中考试题)
5.由若干个单位立方体组成一个较大的立方体,然后把这个大立方体的某些面涂上油漆,油漆干
后,把大立方体拆开成单位立方体,发现有45个单位立方体上任何一面都没有漆,那么大立方体被涂
过油漆的面数是()
A.1B.2C.3D.4
(“创新杯”邀请赛试题)
6.小明把棱长为4的正方体分割成了29个棱长为整数的小正方体,则其中棱长为1的小正方体的
个数是()
A.22B.23C.24D.25
(浙江省竞赛试题)
7.墙角处有若干大小相同的小正方体堆成如图所示的立体图形,如果你打算搬走其中部分小正方
体(不考虑操作技术的限制),但希望搬完后从正面、从上面、从右面用平行光线照射时,在墙面及地
面上的影子不变,那么你最多可以搬走多少个小正方体?
上面
右面
(水平线)
正面
(江苏省竞赛试题)
8.一个长方体纸盒的长、宽、高分别是a,b,c(a>b>c)厘米.如图,将它展开成平面图,
那么这个平面图的周长最小是多少厘米?最大是多少厘米?
⑥
①⑦②
a
④⑤③cb
(江苏省竞赛试题)
9.王老师将底面半径为20厘米、高为35厘米的圆柱形容器中的果汁全部倒入如图所示的杯子中,
若杯口直径为20厘米,杯底直径为10厘米,杯高为12厘米,杯身长13厘米,问果汁可以倒满多少杯?
20
1213
10
(世界数学团体锦标赛试题)
10.一个边长为5厘米的正方体,它是由125个边长为1厘米的小正方体组成的..P为上底面ABCD
的中心,如果挖去(如图)的阴影部分为四棱锥,剩下的部分还包括多少个完整的棱长是1厘米的小正
方体?
DC
P
AB
HG
EF
(深圳市“启智杯”数学思维能力竞赛试题)
专题21从不同的方向看
例114提示:2x=8,y=10,x+y=14.
例2D
例3(1)左视图有以下5种情形:
(2)n=8,9,10,11.
例4正方体个数至少为4个.正方体露在外面的面积和的最大值为9.提示:最下面正方体1个面的面
积是1,侧面露出的面积和是4,每相邻两个正方体中上面的1个正方体每个面的面积都正好是其下
1
面正方体1个面面积的,所有正方体侧面面积之和加上所有正方体的上面露出的面积和(正好是最下
2
4
面正方体上底面的面积1)即是这些正方体露在外面的面积和.如:2个正方体露出的面积和是4++
2
444441
1=7,3个正方体露出的面积和是4+++1=8,4个正方体露出的面积和是4++++1=8,
242482
4444344444
5个正方体露出的面积和是4+++++1=8,6个正方体露出的面积和是4+++++
2481642481632
7
+1=8,……故随着小正方体木块的增加,其外露的面积之和都不会超过9.
8
例5为方便起见,设正方体的棱长为6个单位,首先不能切出棱长为5的立方体,否则不可能分割成49
个小正方体.
设切出棱长为1的正方体有a个,棱长为2的正方体有b个,如果能切出1个棱长为4的正方体,则
a+8b+64=2166
有,解之得b=14.不合题意,所以切不出棱长为4的正方体.
a+b=49-17
设切出棱长为1的正方体有a个,棱长为2的正方体有b个,棱长为3的正方体有c个,
a+8b+27c=216
则,解得a=36,b=9,c=4,
a+b+c=49
故可分割棱长分别为1,2,3的正方体各有36个,9个,4个,分法如图所示.
24×3
例6(1)66V+F-E=2(2)20(3)这个多面体的面数为x+y,棱数为=36条.根据V
2
+F-E=2,可得24+(x+y)-36=2,∴x+y=24.
模型应用
设足球表面的正五边形有x个,正六边形有y个,总面数F为x+y个.因为一条棱连着两个面,所
1
以球表面的棱数E为(5x+6y),又因为一个顶点上有三条棱,一条棱上有两个顶点,所以顶点数V=
2
121
(5x+6y)·=(5x+6y).
233
11
由欧拉公式V+F-E=2得(x+y)+(5x+6y)-×(5x+6y)=2,解得x=12.
32
所以正五边形只要12个.
5x
又根据每个正五边形周围连着5个正六边形,每个正六边形又连着3个正五边形,所以六边形个数
3
=20,即需20个正六边形.
A级
1.62.53.84.4(2n-1)5.C6.B7.C8.B9(1)522(2)略
10.(1)
(2)11块.
B级
1
1.上空格填,下空格填22.383.2π4.B
2
5.D提示:设大立方体的棱长为n,n>3,若n=6,即使6个面都油漆过,未油漆的单位立方体也有43
=64个>45,故n=4或5.除掉已漆的单位立方体后,剩下未漆的构成一个长方体,设其长、宽、高
分别为a,b,c,abc=45,只能是3×3×5=45,故n=5.
6.C提示:若分割出棱长为3的正方体,则棱长为3的正方体只能有1个,余下的均是棱长为1的正方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年银行春招考试查缺补漏试题及答案
- 提升农业人才素质的有效策略与实践路径
- 个人转让劳务合同样本
- 排水管网升级与积水治理方案可行性研究
- 会员保洁合同样本
- 光驱供货合同范例
- 个人钢板租赁合同标准文本
- 2023二年级语文上册 第六单元 16 朱德的扁担教学设计 新人教版
- bim购销合同样本
- 保险劳务合同样本
- 风景园林基础试题及答案
- 2024年法律职业资格考试(试卷一)客观题试卷与参考答案
- 室上性心动过速护理课件
- 安全生产重大事故隐患排查报告表
- 第1章 地理信息系统概述《地理信息系统教程》
- JJF 1109-2003 跳动检查仪校准规范-(高清现行)
- 水利水保监理过程中承包商、监理方用空表
- T∕CAOE 27-2021 海洋工程生态评估导则
- 军事地形学地形图基本知识
- 生物竞赛--细胞生物学课件
- 基于三菱PLC控制的恒压供水系统设计
评论
0/150
提交评论