26、反比例函数K值的意义(答案)_第1页
26、反比例函数K值的意义(答案)_第2页
26、反比例函数K值的意义(答案)_第3页
26、反比例函数K值的意义(答案)_第4页
26、反比例函数K值的意义(答案)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.(2022秋•石阡县期中)如图,在平面直角坐标系中,的顶点的坐标为,平分交于点,反比例函数的图象经过点,.若,则的值为A. B. C. D.【解答】解:如图,过作轴于点,交的延长线于点,平分,,,,点坐标为,,,,过作轴于点,,,设,,,,点,点,点,都在反比例函数图象上,,解得..,..故选:.2.(2021秋•荣昌区期末)在平面直角坐标系中,,点在轴上,以为对角线构造平行四边形,点在第三象限,与轴交于点,延长至点,使得,,连结对角线与交于点,连结、交于点,若、在反比例函数上,,则的值为A.30 B.24 C.20 D.15【解答】解:,点在轴上,,,,,设点,则,,四边形是平行四边形,,,,,,四边形是平行四边形,点的纵坐标为6,、在反比例函数上,,,,点为的中点,,又点为的中点,,,,,,,,设直线与轴交于点,,设直线的解析式为:,,解得,,,,,解得,,将点代入,.故选:.3.(2021•重庆模拟)如图,在平面直角坐标系中,、两点分别在轴、轴上,,的垂直平分线与反比例函数的图象交于点,与交于点,与轴交于点.连接并延长,交于点.若,且,则的值为A.6 B. C.7 D.【解答】解:如图,连接,由题意可知,垂直平分,,,,,,,,是等腰三角形,,,,即点为的中点.,,,,即.,,,,.则.设,则,,.,,则,,,解得.,..故选:.4.(2023•二道区校级模拟)如图,在平面直角坐标系中,四边形的边与轴的正半轴重合,,轴,对角线与交于点.已知,的面积为2.若反比例函数的图象恰好经过点,则的值为A. B. C.8 D.16【解答】解:如图,作于点,,,,,的面积为2,,,,,,,,,,,,.故选:.5.(2023•望花区模拟)如图,在中,,点在轴上,点,点分别为、的中点,连接,点为上任意一点,连接、,反比例函数的图象经过点,若的面积为4,则的值为A. B. C. D.【解答】解:如图,过点作轴交于点,由题可知:点,点分别为、的中点,是的中位线,点在线段上,,,是等腰三角形,轴,是的中线,,设,,根据图象,,,,点在反比例函数上,.故选:.6.(2023•大石桥市校级三模)如图,在平面直角坐标系中,反比例函数的图象与边长是6的正方形的两边,分别相交于,两点,的面积为10,则的值是A.24 B.12 C.8 D.6【解答】解:正方形的边长为6,点坐标为,点坐标为,点坐标为,、在反比例函数的图象上,点坐标为.点坐标为,,,,,,,解得:,(舍.故选:.7.(2023•黑龙江)如图,是等腰三角形,过原点,底边轴,双曲线过,两点,过点作轴交双曲线于点.若,则的值是A. B. C. D.【解答】解:设与轴的交点为,,则,,由题意知,,即是线段的中点,过作于点,,,,轴,,,,,,,.故选:.二.填空题(共13小题)8.(2023•浙江模拟)如图,点是反比例函数上一点,过点作轴、轴的垂线,分别交反比例函数的图象于点、,若,,则点的坐标为,.【解答】解:如图,延长交轴于,延长交轴于点,设点,,,,,,,,,,,,,,,四边形是矩形,,,,,,,,,,,,,,,,,,故答案为:,.9.(2023春•嵊州市期末)如图,已知在平面直角坐标系中,点是对角线的中点,反比例函数的图象经过点,点.若的面积为30,且轴将的面积分为,则的值为4.【解答】解:设与轴交于点,连接并延长交于点,连接并延长交轴于点,分别过点、作轴的垂线,垂足分别为、,轴将的面积分为,是的中点,点是对角线的中点,,,四边形是平行四边形,,,,四边形是平行四边形,,轴,,且,,,,且,,,,,,.故答案为:4.10.(2023•江都区二模)如图,直线与双曲线交于、两点,将直线绕点顺时针旋转,与双曲线位于第三象限的一支交于点,若,则12.【解答】解:作轴于,交于,轴于,轴于,连接,设交轴于,,为等腰直角三角形,,,,,,,设,,,,,,即,,,,点、在反比例函数上,,设,,,解得:或(舍去),,,即,即,或(舍去),,,.故答案为:12.11.(2023春•宁波期末)如图,在平面直角坐标系中,正方形的顶点、恰好落在双曲线上,且点在上,交轴于点.①当点坐标为时,点的坐标为,;②当平分时,正方形的面积为.【解答】解:连接,作轴于点,轴于点,四边形是正方形,,,,轴,轴,,,,,,,,①将代入,得,,,,,,故答案为:,.②作于点,平分,,,,在中,,,,轴,轴,,又,,,,,设,则,点在函数上,,解得,,,,.故答案为:12.12.(2023•慈溪市一模)如图,在平面直角坐标系中,反比例函数为常数,的图象经过的顶点,交轴于点,轴,为边上一点,,连结并延长交轴于点,连结.(1)设的面积,四边形的面积为,则的值为;(2)当的面积为3时,的值为.【解答】解:(1)设:每一份为,,,,,四边形是平行四边形,,设和之间的距离为,,,;故答案为:.(2)如图,设点到的距离为,点到的距离为,连接、、、,,,,即,,,,,,,,.反比例函数在一、三象限,.故答案为:8.13.(2023•靖江市一模)已知点是反比例函数图象上的任意一点,连接并延长交反比例函数图象于点.现有以下结论:①点一定在反比例函数的图象上;②过点作轴于,;③分别过点,作的垂线交反比例函数图象于点,,则四边形是平行四边形;④若点,在反比例函数的图象上,且,则四边形为平行四边形.其中正确的是①③.(写出所有正确结论的序号)【解答】解:①点在反比例函数图象上,,将点代入函数解析式得,,点在反比例函数图象上,故①正确,符合题意;②当时,,,不成立,故②错误,不符合题意;③由反比例函数的对称性得,,,,,,,,,四边形是平行四边形,故③正确,符合题意;④反比例函数图象一支上到点的距离为定值(不为零)的点有两个,当点,在反比例函数的图象上且时,四边形不一定为平行四边形,故④错误,不符合题意;故答案为:①③.14.(2023•鄞州区校级一模)如图,,为反比例函数第一象限图象上任意两点,连结并延长交反比例函数图象另一支于点,连结交轴于点,交轴于点,连结,连结并向两侧延长分别交轴于点,交轴于点.已知,,则,的值为.【解答】解:如图,设,,过点作轴于点,轴于点,过点作轴于点,轴于点,过点作轴于点,连接,则,,,,,,,,,,,即,,即,,,,,,,,;、关于原点对称,,,,,,,,,,,,,,,,,,,,,即,,又,,,.故答案为:,.15.(2023春•邗江区月考)如图,在平面直角坐标系中,,分别为轴、轴正半轴上的点,以,为边,在第一象限内作矩形,且,将矩形翻折,使点与原点重合,折痕为,点的对应点落在第四象限,过点的反比例函数的图象恰好过的中点,则点的坐标为,.【解答】解:如图,连接,交于点,矩形翻折,使点与原点重合,折痕为,,,,,,而,,,即点是的中点,过点作于点,则是的中位线,则,则,而,则,解得点是反比例函数上的点,则,而,故,设,则,则,则,解得,(负值已舍去),则,,连接,作于,,,四边形是平行四边形,,,△,,,,,,,,为,,故答案为:,.16.(2022秋•荣成市期中)如图,菱形的顶点分别在反比例函数和的图象上,,则的值为.【解答】解:连接,,如图,菱形的顶点分别在反比例函数和的图象上,又菱形与双曲线均为中心对称图形,,经过点.,平分,,..过点作轴于点,过点作轴于点,由反比例函数比例系数的几何意义可得:,.,.轴,..,,...故答案为:.17.(2022•钱塘区二模)如图,点在轴正半轴上,点在第一象限,,函数的图象分别交,于点,,若,,则的长为5;当时,的值为.【解答】解:如图,过点作于,过点作于,过点作于点,设,,.,,,,.设,,,,,,,反比例函数的图象分别交边,于点,,,解得,,,.,,即,.若,则.由射影定理可得.,即,在中,由勾股定理可得,,,整理得..故答案为:5;.18.(2021•思明区校级二模)如图,菱形中,,顶点,在双曲线上,顶点,在双曲线上,且经过点.若,则菱形面积的最小值是.【解答】解:如图,过点作轴于,过点作轴于,连接,,,四边形是菱形,,,,,,,四边形是菱形,,,,是等边三角形,,,,,,设点的坐标为,,,,,,,点在反比例函数图象上,,,,,,,,,,,当时,,故答案为:.19.(2021•奉化区校级模拟)如图,平面直角坐标系中,等腰的顶点,分别在轴、轴上,斜边与函数交于点,,过点作,交函数交于点,连结,交于点,若的面积与的面积都等于2.4,则的值为7.【解答】解:设,点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论