




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省大兴安岭漠河县一中2024-2025学年高三第一次联考(一模)数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则的取值范围是()A.[0,1] B. C.[1,2] D.[0,2]2.若直线经过抛物线的焦点,则()A. B. C.2 D.3.一个盒子里有4个分别标有号码为1,2,3,4的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是4的取法有()A.17种 B.27种 C.37种 D.47种4.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是()A. B. C. D.5.已知为虚数单位,若复数,则A. B.C. D.6.已知斜率为k的直线l与抛物线交于A,B两点,线段AB的中点为,则斜率k的取值范围是()A. B. C. D.7.已知定义在上的偶函数,当时,,设,则()A. B. C. D.8.设命题:,,则为A., B.,C., D.,9.设是虚数单位,则“复数为纯虚数”是“”的()A.充要条件 B.必要不充分条件C.既不充分也不必要条件 D.充分不必要条件10.复数的共轭复数记作,已知复数对应复平面上的点,复数:满足.则等于()A. B. C. D.11.已知等比数列满足,,则()A. B. C. D.12.设全集,集合,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知实数x,y满足(2x-y)2+4y14.已知半径为4的球面上有两点A,B,AB=42,球心为O,若球面上的动点C满足二面角C-AB-O的大小为60°15.函数的图象在处的切线方程为__________.16.记Sk=1k+2k+3k+……+nk,当k=1,2,3,……时,观察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推测,A﹣B=_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为是椭圆的一个焦点,点,直线的斜率为1.(1)求椭圆的方程;(1)若过点的直线与椭圆交于两点,线段的中点为,是否存在直线使得?若存在,求出的方程;若不存在,请说明理由.18.(12分)己知圆F1:(x+1)1+y1=r1(1≤r≤3),圆F1:(x-1)1+y1=(4-r)1.(1)证明:圆F1与圆F1有公共点,并求公共点的轨迹E的方程;(1)已知点Q(m,0)(m<0),过点E斜率为k(k≠0)的直线与(Ⅰ)中轨迹E相交于M,N两点,记直线QM的斜率为k1,直线QN的斜率为k1,是否存在实数m使得k(k1+k1)为定值?若存在,求出m的值,若不存在,说明理由.19.(12分)已知函数.(1)当a=2时,求不等式的解集;(2)设函数.当时,,求的取值范围.20.(12分)已知数列满足,,其前n项和为.(1)通过计算,,,猜想并证明数列的通项公式;(2)设数列满足,,,若数列是单调递减数列,求常数t的取值范围.21.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足bcosA﹣asinB=1.(1)求A;(2)已知a=2,B=,求△ABC的面积.22.(10分)已知都是大于零的实数.(1)证明;(2)若,证明.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
设,可得,构造()22,结合,可得,根据向量减法的模长不等式可得解.【详解】设,则,,∴()2•2||22=4,所以可得:,配方可得,所以,又则[0,2].故选:D.本题考查了向量的运算综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.2.B【解析】
计算抛物线的交点为,代入计算得到答案.【详解】可化为,焦点坐标为,故.故选:.本题考查了抛物线的焦点,属于简单题.3.C【解析】
由于是放回抽取,故每次的情况有4种,共有64种;先找到最大值不是4的情况,即三次取出标号均不为4的球的情况,进而求解.【详解】所有可能的情况有种,其中最大值不是4的情况有种,所以取得小球标号最大值是4的取法有种,故选:C本题考查古典概型,考查补集思想的应用,属于基础题.4.B【解析】因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定.故选B.5.B【解析】
因为,所以,故选B.6.C【解析】
设,,,,设直线的方程为:,与抛物线方程联立,由△得,利用韦达定理结合已知条件得,,代入上式即可求出的取值范围.【详解】设直线的方程为:,,,,,联立方程,消去得:,△,,且,,,线段的中点为,,,,,,,,把代入,得,,,故选:本题主要考查了直线与抛物线的位置关系,考查了韦达定理的应用,属于中档题.7.B【解析】
根据偶函数性质,可判断关系;由时,,求得导函数,并构造函数,由进而判断函数在时的单调性,即可比较大小.【详解】为定义在上的偶函数,所以所以;当时,,则,令则,当时,,则在时单调递增,因为,所以,即,则在时单调递增,而,所以,综上可知,即,故选:B.本题考查了偶函数的性质应用,由导函数性质判断函数单调性的应用,根据单调性比较大小,属于中档题.8.D【解析】
直接利用全称命题的否定是特称命题写出结果即可.【详解】因为全称命题的否定是特称命题,所以,命题:,,则为:,.故本题答案为D.本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.9.D【解析】
结合纯虚数的概念,可得,再结合充分条件和必要条件的定义即可判定选项.【详解】若复数为纯虚数,则,所以,若,不妨设,此时复数,不是纯虚数,所以“复数为纯虚数”是“”的充分不必要条件.故选:D本题考查充分条件和必要条件,考查了纯虚数的概念,理解充分必要条件的逻辑关系是解题的关键,属于基础题.10.A【解析】
根据复数的几何意义得出复数,进而得出,由得出可计算出,由此可计算出.【详解】由于复数对应复平面上的点,,则,,,因此,.故选:A.本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于基础题.11.B【解析】由a1+a3+a5=21得a3+a5+a7=,选B.12.B【解析】
可解出集合,然后进行补集、交集的运算即可.【详解】,,则,因此,.故选:B.本题考查补集和交集的运算,涉及一元二次不等式的求解,考查运算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.2【解析】
直接利用柯西不等式得到答案.【详解】根据柯西不等式:2x-y2+4y当2x-y=2y,即x=328故答案为:2.本题考查了柯西不等式求最值,也可以利用均值不等式,三角换元求得答案.14.4【解析】
设△ABC所在截面圆的圆心为O1,AB中点为D,连接OD,易知∠ODO1即为二面角C-AB-O的平面角,可求出OD, O1D及OO1,然后可判断出四面体OABC外接球的球心E在直线OO1上,在【详解】设△ABC所在截面圆的圆心为O1,AB中点为D,连接OD,OA=OB,所以,OD⊥AB,同理O1D⊥AB,所以,∠ODO1即为二面角∠ODO因为OA=OB=4, AB=42,所以△OAB在Rt△ODO1中,由cos60º=O1D因为O1到A、B、C三的距离相等,所以,四面体OABC外接球的球心E在直线OO设四面体OABC外接球半径为R,在Rt△O1由勾股定理可得:O1B2+O本题考查了三棱锥的外接球问题,考查了学生的空间想象能力、逻辑推理能力及计算求解能力,属于中档题.15.【解析】
利用导数的几何意义,对求导后在计算在处导函数的值,再利用点斜式列出方程化简即可.【详解】,则切线的斜率为.又,所以函数的图象在处的切线方程为,即.故答案为:本题主要考查了根据导数的几何意义求解函数在某点处的切线方程问题,需要注意求导法则与计算,属于基础题.16.【解析】
观察知各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,据此计算得到答案.【详解】根据所给的已知等式得到:各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,∴A,A1,解得B,所以A﹣B.故答案为:.本题考查了归纳推理,意在考查学生的推理能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(1)不存在,理由见解析【解析】
(1)利用离心率和过点,列出等式,即得解(1)设的方程为,与椭圆联立,利用韦达定理表示中点N的坐标,用点坐标表示,利用韦达关系代入,得到关于k的等式,即可得解.【详解】(1)由题意,可得解得则,故椭圆的方程为.(1)当直线的斜率不存在时,,不符合题意.当的斜率存在时,设的方程为,联立得,设,则,,,即.设,则,,,则,即,整理得,此方程无解,故的方程不存在.综上所述,不存在直线使得.本题考查了直线和椭圆综合,考查了弦长和中点问题,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.18.(1)见解析,(1)存在,【解析】
(1)求出圆和圆的圆心和半径,通过圆F1与圆F1有公共点求出的范围,从而根据可得点的轨迹,进而求出方程;(1)过点且斜率为的直线方程为,设,,联立直线方程和椭圆方程,根据韦达定理以及,,可得,根据其为定值,则有,进而可得结果.【详解】(1)因为,,所以,因为圆的半径为,圆的半径为,又因为,所以,即,所以圆与圆有公共点,设公共点为,因此,所以点的轨迹是以,为焦点的椭圆,所以,,,即轨迹的方程为;(1)过点且斜率为的直线方程为,设,由消去得到,则,,①因为,,所以,将①式代入整理得因为,所以当时,即时,.即存在实数使得.本题考查椭圆定理求椭圆方程,考查椭圆中的定值问题,灵活应用韦达定理进行计算是关键,并且观察出取定值的条件也很重要,考查了学生分析能力和计算能力,是中档题.19.(1);(2).【解析】试题分析:(1)当时;(2)由等价于,解之得.试题解析:(1)当时,.解不等式,得.因此,的解集为.(2)当时,,当时等号成立,所以当时,等价于.①当时,①等价于,无解.当时,①等价于,解得.所以的取值范围是.考点:不等式选讲.20.(1),证明见解析;(2)【解析】
(1)首先利用赋值法求出的值,进一步利用定义求出数列的通项公式;(2)首先利用叠乘法求出数列的通项公式,进一步利用数列的单调性和基本不等式的应用求出参数的范围.【详解】(1)数列满足,,其前项和为.所以,,则,,,所以猜想得:.证明:由于,所以,则:(常数),所以数列是首项为1,公差为的等差数列.所以,整理得.(2)数列满足,,所以,则,所以.则,所以,所以,整理得,由于,所以,即.本题考查的知识要点:数列的通项公式的求法及应用,叠乘法的应用,函数的单调性在数列中的应用,基本不等式的应用,主要考察学生的运算能力和转换能力,属于中档题型.21.(1);(2).【解析】
(1)由正弦定理化简已知等式可得sinBcosA﹣sinAsinB=1,结合sinB>1,可求tanA=,结合范围A∈(1,π),可得A的值;(2)由已知可求C=,可求b的值,根据三角形的面积公式即可计算得解.【详解】(1)∵bcosA﹣asinB=1.∴由正弦定理可得:sinBc
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 改善减速器接触应力分布的措施
- 船舶建造中轻质复合材料应用
- 掌握体育训练中体能约束调整
- 煤矿顶板施工方案
- 农村加固施工方案
- 幼儿园团队打造
- 行政主管的后勤保障计划
- 快乐娃娃安全教育
- 随机应变的管理能力提升计划
- 网络营销渠道选择与优化指南
- 火龙罐综合灸疗法
- 05价值观探索-职业生涯规划
- 劳务派遣用工管理办法
- 初中数学人教七年级下册第七章 平面直角坐标系 平面直角坐标系中图形面积的求法PPT
- 颊癌病人的护理查房
- 特种设备使用登记表(范本)
- 汉译巴利三藏相应部5-大篇
- YSJ 007-1990 有色金属选矿厂 试验室、化验室及技术检查站工艺设计标准(试行)(附条文说明)
- 水利水电工程专业英语——水工结构篇
- 服装美术设计基础第三章
- 第5章-热系统评估
评论
0/150
提交评论